空间感知与计算(ASC)实验室简介 Intro.
厦门大学空间感知与计算实验室(spAtial Sensing and Computing,简称“ASC”)是福建省智慧城市感知与计算重点实验室(省优秀重点实验室)、多媒体可信感知与高效计算教育部重点实验室的核心团队。实验室共有专任科研人员15人,博硕士研究生100余名。围绕三维视觉、激光雷达遥感、空间群智感知、强化学习及大模型应用等研究方向发表论文200余篇(CCF-A及IEEE/ACM Trans级别80多篇),牵头或参与国家/行业/团体标准3项,授权发明专利50多项(含专利转让8项)。
实验室获国家级领军人才、国家级人才计划基金(福建省首位)、国家级青年人才、国家海洋局重大项目、国家自然科学基金联合重点/面上/青年项目、及省市科技项目,并完成航天科工集团、航天科技集团、百度、腾讯、市轨道建设发展集团等委托项目60余项。获得福建省科技进步一/二等奖、国际摄影测量与遥感学会ISPRS“Giuseppe Inghilleri奖”和“Otto von Gruber奖”(均为国内首位获奖者)、中国激光雷达青年科技奖、入选ESI爱思唯尔中国高被引学者、入选福建省优秀博士/硕士论文5人。
代表性论文 Selected Papers
查看更多
Shijun Zheng, Yu Guo, Weiquan Liu, Yu Zang, Siqi Shen, Ming Cheng, Cheng Wang

Physically-Based LiDAR Smoke Simulation for Robust 3D Object Detection

AAAI 2026, CCF A

code
bibtex
xxx
Zhiyang Lu, Wen Jiang, Tianren Wu, Zhichao Wang, Changwang Zhang, Siqi Shen, Ming Cheng

Walking Further: Semantic-aware Multimodal Gait Recognition under Long-Range Conditions

AAAI 2026, CCF A

code
bibtex
xx
Chenxing Lin, Xinhui Gao, Haipeng Zhang, Xinran Li, Haitao Wang, Songzhu Mei, Chenglu Wen, Weiquan Liu, Siqi Shen*, Cheng Wang

MAGE: Multi-scale Autoregressive Generation for Offline Reinforcement Learning

ICLR 2026

bibtex
xxx
Xinran Li, Guangda Huzhang, Siqi Shen, Qing-Guo Chen, Zhao Xu, Weihua Luo, Kaifu Zhang, Jun Zhang

Getting Your LLMs Ready for Reinforcement Learning with Lightweight SFT

ICLR 2026

bibtex
xx
Shijun Zheng, Weiquan Liu, Yu Guo, Yu Zang, Siqi Shen, Cheng Wang

A New Adversarial Perspective for LiDAR-based 3D Object Detection

AAAI 2025, CCF A

bibtex
xxx
Chao Li, Ziwei Deng, Chenxing Lin, Wenqi Chen, Yongquan Fu, Weiquan Liu, Chenglu Wen, Cheng Wang, Siqi Shen*

DoF: A Diffusion Factorization Framework for Offline Multi-Agent Reinforcement Learning

ICLR 25, 机器学习三大会

code
bibtex
xxx
Zijun Li, zhipeng cai, Bochun Yang, Xuelun Shen, Siqi Shen, Xiaoliang Fan, Michael Paulitsch, Cheng Wang

ConDo: Continual Domain Expansion for Absolute Pose Regression

AAAI 2025, CCF A

bibtex
xx
Dunqiang Liu, Shujun Huang, Wen Li, Siqi Shen, Cheng Wang

Text to Point Cloud Localization with Multi-Level Neagtive Contrastive Learning

AAAI 2025, CCF A

bibtex
xxx