空间感知与计算(ASC)实验室简介 Intro.
厦门大学空间感知与计算实验室(spAtial Sensing and Computing,简称“ASC”)是福建省智慧城市感知与计算重点实验室(省优秀重点实验室)、数字福建城市交通大数据研究所(省发改委评比第1名)、省高等学校科技创新团队的核心团队。实验室共有专任科研人员15人,博硕士研究生100余名。围绕三维视觉、激光雷达遥感、空间群智感知、强化学习及大模型应用等研究方向发表论文200余篇(CCF-A及IEEE/ACM Trans级别80多篇),牵头或参与国家/行业/团体标准3项,授权发明专利50多项(含专利转让8项)。
实验室获国家“万人计划”科技创新领军人才、国家级人才计划基金(福建省首位)、国家海洋局重大项目、国家自然科学基金联合重点/面上/青年项目、和省科技厅与市科技局项目,并完成航天科工集团、航天科技集团、百度、腾讯、市轨道建设发展集团等委托项目60余项。获得福建省科技进步一/二等奖、国际摄影测量与遥感学会ISPRS“Giuseppe Inghilleri奖”和“Otto von Gruber奖”(均为国内首位获奖者)、中国激光雷达青年科技奖、入选ESI爱思唯尔中国高被引学者、入选福建省优秀博士/硕士论文5人。
代表性论文 Selected Papers
查看更多
Shijun Zheng, Weiquan Liu, Yu Guo, Yu Zang, Siqi Shen, Cheng Wang

A New Adversarial Perspective for LiDAR-based 3D Object Detection

AAAI 2025, CCF A

bibtex
xxx
Zijun Li, zhipeng cai, Bochun Yang, Xuelun Shen, Siqi Shen, Xiaoliang Fan, Michael Paulitsch, Cheng Wang

ConDo: Continual Domain Expansion for Absolute Pose Regression

AAAI 2025, CCF A

bibtex
xx
Dunqiang Liu, Shujun Huang, Wen Li, Siqi Shen, Cheng Wang

Text to Point Cloud Localization with Multi-Level Neagtive Contrastive Learning

AAAI 2025, CCF A

bibtex
xxx
Xun Huang, Ziyu Xu, Hai Wu, Jinlong Wang, Chenglu Wen*, Cheng Wang

L4DR: LiDAR-4DRadar Fusion for Weather-Robust 3D Object Detection

AAAI 2025

Pufan Zou, Shijia Zhao, Weijie Huang, Qiming Xia, Chenglu Wen*, Wei Li, Cheng Wang

AdaCo: Overcoming Visual Foundation Model Noise in 3D Semantic Segmentation via Adaptive Label Correction

AAAI 2025

Maoji Zheng, Ziyu Xu, Qiming Xia, Hai Wu, Chenglu Wen*, Cheng Wang

Seg2Box: 3D Object Detection by Point-Wise Semantics Supervision

AAAI 2025

Zihui Wang, Xiaoliang Fan*, Cheng Wang, et al.,

ConTIG: Continuous Representation Learning on Temporal Interaction Graphs

Neural Networks

PDF
bibtex
@article{wang2024contig, title={Contig: Continuous representation learning on temporal interaction graphs}, author={Wang, Zihui and Yang, Peizhen and Fan, Xiaoliang and Yan, Xu and Wu, Zonghan and Pan, Shirui and Chen, Longbiao and Zang, Yu and Wang, Cheng and Yu, Rongshan}, journal={Neural Networks}, volume={172}, pages={106151}, year={2024}, publisher={Elsevier} }
Zihui Wang, Cheng Wang, Xiaoliang Fan*, et al.

FedSAC: Dynamic Submodel Allocation for Collaborative Fairness in Federated Learning

KDD-2024

PDF
bibtex
@article{wang2024fedsac, title={FedSAC: Dynamic Submodel Allocation for Collaborative Fairness in Federated Learning}, author={Wang, Zihui and Wang, Zheng and Lyu, Lingjuan and Peng, Zhaopeng and Yang, Zhicheng and Wen, Chenglu and Yu, Rongshan and Wang, Cheng and Fan, Xiaoliang}, journal={arXiv preprint arXiv:2405.18291}, year={2024} }