科研团队
范晓亮
高级工程师、硕士生导师
fanxiaoliang@xmu.edu.cn

范晓亮,法国巴黎第六大学计算机科学博士,兰州大学计算机科学与技术学士。厦门大学信息学院高级工程师。研究兴趣:可信联邦学习、时空数据挖掘、行业大模型应用。主持3项国家自然科学基金(2面上+1青年),以及百度、腾讯、厦门地铁等产学研项目。在TKDE、TSC、TITS等期刊和AAAI、KDD、IJCAI、WWW、ICDE等会议等发表论文80余篇。获CCF服务计算青年才俊奖(2022)、福建省科技进步一等奖(2018)。ACM/IEEE/CCF高级会员、IEEE教育数据挖掘工作组副主席,CCF厦门会员活动中心执委(2023-2025),CCF服务计算专委会执行委员、CCF普适计算专委会执行委员等。

完整论文+代码:https://xiaoliangfan.github.io/


主持科研项目(部分)

  • 面向时空图的高效安全联邦学习关键问题研究,国家自然科学基金面上基金项目62272403),范晓亮(主持),20231-202612月,54万元

  • 大规模人群出行的不确定性分析与城市级别人流预测研究,国家自然科学基金面上基金项目61872306),范晓亮(主持),20191-202212月,64万元,已结题

  • 情境感知云计算工作流的动态服务选择研究,国家自然科学基金青年科学基金项目61300232),范晓亮(主持),20141-201612月,23万,已结题

  • 基于飞桨平台的联邦学习与大模型精调算法研究,CCF-百度松果基金CCF-BAIDU OF2022016),范晓亮(主持),20229-20238月,10万元,已结题

  • 城轨云、大数据应用关键指标专题研究项目,企事业委托项目(厦门轨道交通集团有限公司),范晓亮(主持),20212-20222月,39.34455万元,已结题

  • 面向时空相关性挖掘的情境感知Web服务推荐算法研究,中国博士后科学基金面上项目一等资助(2015M580564),范晓亮(主持),20156月-20175月,8万,已结题


学术获奖(部分)

  • CCF服务计算青年才俊奖,范晓亮(序1),20228月,中国计算机学会CCF服务计算专委会

  • 福建省科技进步一等奖,城市交通多源感知与智能计算研究和推广,范晓亮(序5),2019年,福建省政府

  • 联邦学习大模型精调策略与产业实践,中国国际大学生创新大赛(2023)产业赛道铜奖,指导教师(序1)、

  • CSC-IBM中国优秀教师奖教金,范晓亮(序1),201410月,国家留学基金管理委员会

  • 法国埃菲尔卓越博士奖学金,范晓亮(序1),20103月,法国外交部(编号:690544G



产业化应用案例

第一,GMAN图多注意力机制的城市交通流量预测平台(https://github.com/zhengchuanpan/GMAN

  • GMAN: A Graph Multi-Attention Network for Traffic Prediction已发表在AAAI-20 Google引用1200+Github350+ starsAAAI-20最具影响力论文排名第三),城市级路网流量1小时以上预测精度全球领先

  • 应用:20203为厦门市疫情回流风险预估提供决策支撑。厦门市领导批示,学习强国、光明日报报道

第二,厦门市交通大数据分析应用平台(部署在厦门市大数据安全开放平台https://data.xm.gov.cn

  • 算法:平台汇聚厦门市全量交通传感数据100TB,研发20+交通AI算法和交管大模型助手支撑厦门市公安局交警支队和厦门市交通局各类系统调用5+/,服务1亿+用户出行,为相关企业新增产值2亿元

  • 应用:服务2017年金砖国家领导人厦门会晤等重大活动交通安保任务,获2018年福建省科技进步一等奖




研究方向 Research 发表的数据集 Datasets 部分论文列表 Selected Publications
2024
Zhaopeng Peng, Xiaoliang Fan*, Cheng Wang, et al.
FedPFT: Federated Proxy Fine-Tuning of Foundation Models
IJCAI-2024
@article{peng2024fedpft, title={FedPFT: Federated Proxy Fine-Tuning of Foundation Models}, author={Peng, Zhaopeng and Fan, Xiaoliang and Chen, Yufan and Wang, Zheng and Pan, Shirui and Wen, Chenglu and Zhang, Ruisheng and Wang, Cheng}, journal={arXiv preprint arXiv:2404.11536}, year={2024} }
Zihui Wang, Cheng Wang, Xiaoliang Fan*, et al.
FedSAC: Dynamic Submodel Allocation for Collaborative Fairness in Federated Learning
KDD-2024
@article{wang2024fedsac, title={FedSAC: Dynamic Submodel Allocation for Collaborative Fairness in Federated Learning}, author={Wang, Zihui and Wang, Zheng and Lyu, Lingjuan and Peng, Zhaopeng and Yang, Zhicheng and Wen, Chenglu and Yu, Rongshan and Wang, Cheng and Fan, Xiaoliang}, journal={arXiv preprint arXiv:2405.18291}, year={2024} }
Zihui Wang, Xiaoliang Fan*, Cheng Wang, et al.,
ConTIG: Continuous Representation Learning on Temporal Interaction Graphs
Neural Networks
@article{wang2024contig, title={Contig: Continuous representation learning on temporal interaction graphs}, author={Wang, Zihui and Yang, Peizhen and Fan, Xiaoliang and Yan, Xu and Wu, Zonghan and Pan, Shirui and Chen, Longbiao and Zang, Yu and Wang, Cheng and Yu, Rongshan}, journal={Neural Networks}, volume={172}, pages={106151}, year={2024}, publisher={Elsevier} }
Chuanpan Zheng, Xiaoliang Fan*, Cheng Wang, et al.
Spatio-Temporal Joint Graph Convolutional Networks for Traffic Forecasting
IEEE Transactions on Knowledge and Data Engineering
@article{zheng2023spatio, title={Spatio-temporal joint graph convolutional networks for traffic forecasting}, author={Zheng, Chuanpan and Fan, Xiaoliang and Pan, Shirui and Jin, Haibing and Peng, Zhaopeng and Wu, Zonghan and Wang, Cheng and Philip, S Yu}, journal={IEEE Transactions on Knowledge and Data Engineering}, year={2023}, publisher={IEEE} }
2022
Shangbin Wu, Xiaoliang Fan*, Cheng Wang, et al.
Multi-Graph Fusion Networks for Urban Region Embedding
IJCAI-2022
@article{wu2022multi, title={Multi-graph fusion networks for urban region embedding}, author={Wu, Shangbin and Yan, Xu and Fan, Xiaoliang and Pan, Shirui and Zhu, Shichao and Zheng, Chuanpan and Cheng, Ming and Wang, Cheng}, journal={arXiv preprint arXiv:2201.09760}, year={2022} }
2020
Chuanpan Zheng, Xiaoliang Fan*, Cheng Wang, et al.
GMAN: A Graph Multi-Attention Network for Traffic Prediction
AAAI-2020
@inproceedings{zheng2020gman, title={Gman: A graph multi-attention network for traffic prediction}, author={Zheng, Chuanpan and Fan, Xiaoliang and Wang, Cheng and Qi, Jianzhong}, booktitle={Proceedings of the AAAI conference on artificial intelligence}, volume={34}, number={01}, pages={1234--1241}, year={2020} }
2019
Chuanpan Zheng; Xiaoliang Fan*, Cheng Wang et al.
DeepSTD: Mining Spatio-temporal Disturbances of Multiple Context Factors for Citywide Traffic Flow Prediction
IEEE Transactions on Intelligent Transportation Systems
@article{zheng2019deepstd, title={DeepSTD: Mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction}, author={Zheng, Chuanpan and Fan, Xiaoliang and Wen, Chenglu and Chen, Longbiao and Wang, Cheng and Li, Jonathan}, journal={IEEE Transactions on Intelligent Transportation Systems}, volume={21}, number={9}, pages={3744--3755}, year={2019}, publisher={IEEE} }