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ABSTRACT

Collaborative fairness stands as an essential element in federated

learning to encourage client participation by equitably distribut-

ing rewards based on individual contributions. Existing methods

primarily focus on adjusting gradient allocations among clients to

achieve collaborative fairness. However, they frequently overlook

crucial factors such as maintaining consistency across local mod-

els and catering to the diverse requirements of high-contributing

clients. This oversight inevitably decreases both fairness and model

accuracy in practice. To address these issues, we propose FedSAC,

a novel Federated learning framework with dynamic Submodel

Allocation for Collaborative fairness, backed by a theoretical con-

vergence guarantee. First, we present the concept of "bounded collab-
orative fairness (BCF)", which ensures fairness by tailoring rewards

to individual clients based on their contributions. Second, to im-

plement the BCF, we design a submodel allocation module with a

theoretical guarantee of fairness. This module incentivizes high-

contributing clients with high-performance submodels containing

a diverse range of crucial neurons, thereby preserving consistency

across local models. Third, we further develop a dynamic aggre-
gation module to adaptively aggregate submodels, ensuring the
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equitable treatment of low-frequency neurons and consequently en-

hancing overall model accuracy. Extensive experiments conducted

on three public benchmarks demonstrate that FedSAC outperforms

all baseline methods in both fairness and model accuracy. We see

this work as a significant step towards incentivizing broader client

participation in federated learning. The source code is available at

https://github.com/wangzihuixmu/FedSAC.
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1 INTRODUCTION

Federated Learning (FL) empowers multiple data owners to collec-

tively train a global model while preserving the privacy of their

individual training data [23, 45, 46]. Early FL frameworks [3, 16, 37]

usually distributed the same model to all clients without consider-

ing their distinct contributions to the model performance, resulting

in unfairness to high-contributing clients. Collaborative fairness
(CF) [22] stands as an essential element in federated learning to mo-

tivate client engagement by ensuring impartial reward distribution

tied directly to individual contributions.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
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Figure 1: Problem illustration of collaborative fairness in

FL. (a) Conventional gradients-based methods will result in

poor fairness and model accuracy. For example, it is unfair

that obtained models of 𝐶𝑙𝑖𝑒𝑛𝑡2 and 𝐶𝑙𝑖𝑒𝑛𝑡1 are equivalent

neglecting the inferior contribution (𝑐1) of 𝐶𝑙𝑖𝑒𝑛𝑡1. Plus, the

inconsistency in local models results in that obtainedmodels

of𝐶𝑙𝑖𝑒𝑛𝑡2 and𝐶𝑙𝑖𝑒𝑛𝑡3 areworse than expected (𝜃∗
𝑖
). (b) Our pro-

posed FedSAC allocates sufficient submodels to each client

by ensuring a comprehensive balance between fairness and

model accuracy. For example, FedSAC ensures that obtained

models of all clients (i.e., 𝐶𝑙𝑖𝑒𝑛𝑡1, 𝐶𝑙𝑖𝑒𝑛𝑡2 and 𝐶𝑙𝑖𝑒𝑛𝑡3) are in

accordance with their contributions respectively. In addition,

FedSAC guarantees the alignment of ③ and ④ of 𝐶𝑙𝑖𝑒𝑛𝑡2 dur-

ing the training process, thereby enabling all three clients to

obtain their expected models (𝜃∗
𝑖
).

More recently, several gradient-based methods were proposed

to enhance CF [22, 42–44] (i.e., rewarding clients with correspond-

ing model quality according to their contributions) in FL. They dis-

tribute a larger quantity of gradients to higher-contributing clients

than the lower ones as rewards and quantify the degree of fairness

by Pearson Correlation Coefficient 𝜌 . However, for achieving CF,

existing gradient-based methods have two major limitations. On

one hand, the conventional definition of CF doesn’t adequately

distinguish in reward distribution among clients, resulting in a

persistent unfairness for high-contributing clients. In Figure 1 (a),

suppose the contributions of three clients are 𝑐 = [1, 9, 11], and their
rewards are 𝜃∗ = [99, 99.2, 99.3] corresponding. Through the defi-

nition of CF by CGSV [44], the fairness is calculated as 𝛾=98.97, but

there exists an underlying unfairness towards 𝐶𝑙𝑖𝑒𝑛𝑡2 and 𝐶𝑙𝑖𝑒𝑛𝑡3
because𝐶𝑙𝑖𝑒𝑛𝑡1 with an inferior contribution is over-rewarded. On

the other hand, conventional gradient-based methods [22, 42–44]

are ineffective because the inconsistency of local models updated by

variable gradients might lead to significant degradation of overall

model performance. In Figure 1 (a), the local models of clients in

round 𝑡 (𝜃1,𝑡 , 𝜃2,𝑡 , and 𝜃3,𝑡 ) exhibit notable differences (i.e., the larger

the circle, the higher the accuracy). Consequently, the gradients

uploaded by individual clients may not be the optimal for others, cre-

ating a misalignment between obtained rewards Δ
𝜃𝑟𝑒𝑤𝑎𝑟𝑑
𝑖,𝑡

(i.e., the

rewards ultimately obtained by the clients) and expected rewards

Δ
𝜃
𝑒𝑥𝑐𝑒𝑝𝑝𝑡

𝑖,𝑡

(i.e., the rewards that the clients ultimately expected) for

each client.

To address the aforementioned challenges, we propose a novel

Federated learning framework with dynamic Submodel Allocation
for bounded Collaborative fairness (FedSAC), supported by a the-

ory of convergence while achieving competitive model accuracy.

First, our approach introduces the concept of "bounded collabora-
tive fairness (BCF) (refer to 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1)", which ensures fairness

by integrating a differentiated range of rewards allocated to each

client. Second, the submodel allocation module with a theoretical

fairness guarantee, is designed to assign relevant submodels (i.e.,

results of the aggregated model dropout) to individual clients based

on their contributions. Specifically, these submodels encompass

a diverse array of essential neurons for effective training. Third,

the dynamic aggregation module is implemented as a weight re-

alignment mechanism by treating low-frequency neurons equally,

which further improves the overall performance of the global model.

Extensive experiments on three public benchmarks show that the

proposed FedSAC outperforms all baseline methods in terms of

collaborative fairness and model accuracy.

The contributions of this work are summarized:

• We propose FedSAC, a novel federated learning framework

with a convergence guarantee, introducing a new concept

of bounded collaborative fairness (BCF). To the best of our

knowledge, this is the first approach that allocates submodels

equitably for collaborative fairness in FL.

• We implement the concept of BCF through two modules.

First, submodel allocationmodule prioritizes high-contributing
clients by rewarding themwith high-performance submodels

under a theoretical guarantee. Second, dynamic aggregation
module merges submodels by paying equitable attention to

low-frequency neurons to be aggregated.

• We conduct extensive experiments on three benchmarks

with various settings and demonstrate that FedSAC ourper-

forms all baselines in both fairness and model accuracy.

2 RELATEDWORKS

Recent research has shown that distributing different rewards based

on clients’ contributions can significantly impact the FL systems [21,

30, 47]. The incentivemechanisms canmotivate clients to contribute

high-quality data and promote collaboration [11, 31, 44]. We outline

three types of rewards that can be adopted to achieve CF in FL.

Money-based reward. Several studies focus on the mechanism

that rewards clients monetary based on their contributions. [55]

proposes a reputation-based and reverse auction theory mechanism

to reward clients with a limited budget. [48] shows a scheme that

dynamically allocates budgets to clients in a context-aware man-

ner by jointly maximizing the collective utility. While monetary

rewards can be a natural and effective way to incentivize clients

in FL, there exist challenges in maintaining a balance between the

value of model quality and money [1, 53].

Data-based reward. Early studies have explored the fairness

of rewarding different data sizes based on their contributions. [33]

evaluates clients’ contributions by aggregating the training data,

and reward them with the corresponding models. [38] trains a

generative model through the local data of all clients and provides

more synthetic data to those datasets closely aligned with the real

data distribution. However, most of existing data-based reward
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methods rely on the centralized aggregation of all the data during

training, making them difficult to be applied in the FL scenarios.

Gradient-based reward. Recent collaborative fairness (CF)

works aim to reward high-contributing clients with optimal mod-

els. CFFL [22] allocates different gradient numbers based on lo-

cal accuracy in the validation set and data sizes. CGSV [44] re-

wards more gradients to clients whose local gradients are more

similar to the global gradients. FedAVE [42] assigns more gradi-

ents to clients whose data distribution information is more sim-

ilar to the ideal dataset. However, existing rewards systems lack

sufficient differentiation, resulting in an ongoing unfairness for

high-contributing clients, which might degrade the fairness and

model accuracy. Different from these methods, we propose a novel

framework to achieve BCF (refer to 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1) by allocating a

differential range of rewards to clients.

3 PRELIMINARY

FL system consists of a server and multiple clients, aiming to mini-

mize the weighted average of all clients’ local objectives by opti-

mizing a global model [10, 15, 23, 54]. First, the server broadcasts a

model to the clients at random. Second, after training several rounds

locally, the server aggregates these different trained models into

a new global model. Finally, the aggregated model will be sent to

the clients for further local training. The aforementioned process is

repeated multiple times until the global model converges [5, 24, 41].

In this setup, the goal of FL framework is defined as:

𝑚𝑖𝑛
𝜃

𝐹 (𝜃 ) :=

𝑁∑︁
𝑖=1

𝑝𝑖𝐹𝑖 (𝜃 ), (1)

where 𝜃 denotes the global model, 𝑁 represents the number of

clients, and 𝑝𝑖 =
𝑛𝑖
𝑛 , 𝑛 =

∑𝑁
𝑘=1

𝑛𝑘 . 𝐹𝑖 (𝜃 ) is the loss on client 𝑖

using model parameters 𝜃 , i.e., 𝐹𝑖 (𝜃 ) = 1

𝑛𝑖

∑
𝜉𝑖∼𝐷𝑖

𝑙 (𝜃, 𝜉𝑖 ), where 𝐷𝑖

represents the local dataset of client 𝑖 , and 𝑛𝑖 denotes the data size

of 𝐷𝑖 . To achieve this goal as effectively as possible, FedAvg [23]

samples a subset 𝑆𝑡 of 𝑖 clients uniformly, 0 < 𝑖 ≤ 𝑁 , to train the

global model and aggregate the locally trained models by utilizing

the data size ratio 𝑝𝑖 as the weight of client 𝑖 . Although FedAvg is

proven to be effective in minimizing the objective successfully, it

may be unfair to high-quality clients since the system distributes the

same rewards to all clients regardless of their contributions [22, 44].

3.1 Problem Formulation

The standard FL framework allocates the same model to all clients

regardless of their contributions [9, 23, 29, 36], dampening the

motivation of high-quality clients to join FL [33, 40]. Collabora-

tive fairness in FL aims to reward high-contributing clients with

high-quality models. The existing works [22, 42, 44] assess the fair-

ness with the Pearson Correlation Coefficient, 𝜌 (𝑐;𝜃∗), where 𝑐
and 𝜃∗ represent the contributions and rewards of clients, respec-

tively. However, the definition simply considers the relationship

between the contributions and rewards of clients, which may lead

to insufficient incentives for high-contributing clients. For example

in Figure 1 (a), suppose the contributions of 𝐶𝑙𝑖𝑒𝑛𝑡1, 𝐶𝑙𝑖𝑒𝑛𝑡2, and

𝐶𝑙𝑖𝑒𝑛𝑡3 are 𝑐𝑖 = [1, 9, 11] and their rewards are 𝜃∗
𝑖
= [99, 99.2, 99.3]

correspondingly. Through the definition of CF, the fairness is calcu-

lated as 𝛾=98.97, but there exists an underlying unfairness towards

𝐶𝑙𝑖𝑒𝑛𝑡2 and 𝐶𝑙𝑖𝑒𝑛𝑡3 because 𝐶𝑙𝑖𝑒𝑛𝑡1 with an inferior contribution

is over-rewarded.

To address this issue, we propose Bounded Collaborative Fairness
(BCF) to tackle the issue of insufficient incentives for the high-

contributing client. BCF could ensure 𝑐1 < 𝜃∗
1
<
(𝑐1+𝜃 ∗

3
)

2
and then

quantitative fairness with 𝜌 (𝑐 ;𝜃∗). The rationale behind the formula

in 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1 aims to amplify significant distinctions in rewards.

The formula’s left side ensures that clients’ rewards exceed their

contributions, while the right side prevents excessive rewards for

clients with low contributions.

Definition 1 (Bounded Collaborative Fairness). The
contributions (𝑐) and the rewards (𝜃∗) of clients are calculated by the
performance of their standalone models (train without collaboration)
and the final models obtained after collaboration, respectively. Based
on client’s obtained rewards 𝑐𝑖 < 𝜃∗

𝑖
<
(𝑐𝑖+𝑚𝑎𝑥 (𝜃 ∗ ) )

2
, the quantitative

fairness can be computed by 𝛾 := 100 × 𝜌(𝑐 , 𝜃∗) where 𝜌() is the
Pearson Correlation Coefficient. The larger 𝛾 , the better the fairness
of the framework.

4 THE PROPOSED FEDSAC

In this section, we will introduce the details of proposed FedSAC, a

method that ensures both BCF and consistency in local models for

each client. The architecture of FedSAC is shown in Figure 2. The

pseudo codes for FedSAC are provided in Algorithm 1. First, we

introduce the submodel allocation module in Section 4.1. Second,

we present the dynamic aggregation module in Section 4.2. Third,

we proposed the fairness guarantee theory in Section 4.3 to prove

that this submodel allocation strategy can achieve collaborative

fairness. Fourth, we conducted a convergence analysis on FedSAC

and demonstrated its convergence in Section 4.5. In addition, we

analyzed the time complexity and communication costs of FedSAC

in Section 4.5. Finally, we discussed limitations in Section 4.6.

4.1 Submodel Allocation Module

A naive approach achieving bounded collaborative fairness involves

allocating distinct submodels to each client based on their respec-

tive contributions [7]. Unlike previous works such as [8, 32], there

are two primary motivations behind achieving BCF through sub-

model allocation. First, submodels with appropriate pruning may

not match the performance of the global model, enabling clients to

receive diverse submodels according to their contributions. Second,

despite being subsets of the global model, these submodels exhibit

strong mutual validity, meaning that the submodels uploaded by

one client are effective for others, facilitating the training of the

global model. However, it is still challenging to achieve BCF through

submodel-based methods. For one thing, it is crucial to ensure that

the majority of neurons are adequately trained to guarantee the

optimal performance of the global model. For another, the perfor-

mance of allocated submodels should align with their respective

contributions.

To address the aforementioned two challenges, we design a

two-step approach for submodel allocation module. First, we evalu-

ate the importance of each neuron within the model to determine

their contributions respectively (neuron importance evaluation in
Section 4.1.1). Second, we construct submodels for each client with
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Validation
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Figure 2: The overall framework of FedSAC that achieves bounded collaborative fairness by maintaining consistency across

local models. FedSAC consists of two module: 1) submodel allocation module conducts neuron importance evaluation and

submodel construction to reward high-contributing clients with high-performance submodels, thus ensuring consistency in

local models; 2) dynamic aggregationmodule treats those low-frequency neurons equally, which further refines the performance

of the global model.

varying performances based on their contributions, ensuring a di-

verse array of important neurons is included within each submodel

(submodel construction in Section 4.1.2).

4.1.1 Neuron Importance Evaluation. Each neuron within the

model holds a unique contribution [20, 25, 26, 50]. Our intuition

is that the constructed submodels can yield varied performances.

Inspired by Taylor-FO [25], we calculate the neuron importance

in the model by measuring the change in loss upon their removal.

For instance, a greater increase in loss indicates a more significant

contribution by the removed neuron to the model. In Figure 2,

neurons depicted in a redder shade represent a higher contribution

to the model. Essentially, the training objective is to minimize the

cross-entropy loss 𝐿𝑐𝑒 :

min

𝜃

𝑁∑︁
𝑖=1

𝐿𝑐𝑒 (𝑥𝑖 , 𝜃 ), (2)

where 𝑥𝑖 denotes the sample, 𝜃 represents the model, and 𝐿𝑐𝑒 (𝑥𝑖 , 𝜃 )
is the loss function of the classification tasks.

The neurons in the model have a multitude of model parameters,

each of which contributes to the overall performance of the model.

The importance of a neuron 𝐼𝑛𝑖 of the model can be calculated

through the loss increased by removing it:

𝐼𝑛𝑖 = 𝐿𝑐𝑒 (𝑉 , 𝜃 |𝜃𝑧𝑒𝑟𝑜𝑛𝑖
= 0) − 𝐿𝑐𝑒 (𝑉 , 𝜃 ), (3)

where 𝑉 denotes the validation set, which is constructed by evenly

selecting 10% of the data from the original training samples [22],

𝜃𝑧𝑒𝑟𝑜𝑛𝑖
represents that the parameters of the 𝑖-th neuron in the model

are all set to 0.

To simplify the construction of submodels, we normalize the

sum of neuron scores, which represent their importance in the

model presented by percentage:

𝐼𝑛𝑖 =
𝐼𝑛𝑖∑

𝑛𝑖 ∈𝑆 𝐼𝑛𝑖
∗ 100, (4)

where 𝑆 represents all neurons of the model. To reduce the training

time of the framework, we measure the importance of neurons in

themodel by Eq. (3) and Eq. (4) every 10 epochs. All these operations

allow us to efficiently assess the importance of each neuron while

limiting excessive computation demands.

4.1.2 Submodel Construction. In pursuit of fairness, we employ

a dynamic allocation system for submodels with varying perfor-

mances, leveraging clients’ reputations derived from their contribu-

tions. Our approach incorporates a pruning mechanism tailored to

clients’ contributions, simplifying the extraction of submodels with

different performance levels from the global model. In this scheme,

the client 𝑖’s reputation 𝑟𝑖 is expressed as:

𝑟𝑖 = 𝑒𝑐𝑖∗𝛽 , (5)

𝑟𝑖 =
𝑟𝑖

𝑚𝑎𝑥 (𝑟 ) ∗ 100, (6)

where 𝑐𝑖 represents client 𝑖’s contribution, 𝛽 is a hyper-parameter.

The reputations of clients are directly proportional to their contri-

butions. The design rationale for Eq. (5) and Eq. (6) is to calculate

the clients’ reputations (𝑟 ), which facilitates the allocation of their

submodels fairly. More specifically, our pruning method begins

with the most important neuron, ensuring that submodels for low-

contribution clients possess a higher parameter count, which is

beneficial for training the global model. These actions serve a dual

purpose: promoting collaborative fairness while maximizing the

overall performance of the global model. Submodel 𝜃𝑖 is constructed
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by neurons with different reputations:

𝜃𝑖 = 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑟𝑖 ,
∑︁

𝑛𝑖 ∈𝑆
𝐼𝑛𝑖 ), (7)

where 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑟𝑖 ,
∑
𝑛𝑖 ∈𝑆 𝐼𝑛𝑖 ) represents the submodel 𝜃𝑖 when

𝑟𝑖 =
∑
𝑛𝑖 ∈𝑆 𝐼𝑛𝑖 , 𝑟𝑖 denotes client 𝑖’s reputation,

∑
𝑛𝑖 ∈𝑆 𝐼𝑛𝑖 denotes

the set importance for different neurons. 𝑆 represents the positions

of all neurons in the model, arranged in ascending order from the

least to themost important. This design choice aims tomaximize the

inclusion of neurons in each submodel, thereby enhancing the per-

formance of the corresponding local model updates. Subsequently,

this quantity will be utilized in Eq. (8) to generate the submodel’s

mask.

4.2 Dynamic Aggregation Module

Next, the server aggregates the locally trained submodels and allo-

cates distinct submodels to clients in the subsequent round. Recent

submodel-based methods [8, 32] have aimed to allocate varied sub-

models containing numerous neurons to clients. However, these

approaches might pose a potential risk of compromising overall

model performance when integrating low-frequency neurons into

the global model. Consequently, employing a direct aggregation

method such as FedAvg [23] for all neurons becomes inequitable.

Instead of simply averaging the uploaded submodels, our objec-

tive is to optimize the utilization of all neurons within the model.

With the sizes of submodels varying across clients, it becomes es-

sential to treat the contribution of each neuron individually during

aggregation. To ensure fair treatment of low-frequency neurons,

we integrate the frequency of submodel parameter aggregations as

weights to dynamically aggregating local models:

𝑚𝑎𝑠𝑘𝑡𝑖 =𝑚𝑎𝑠𝑘 (𝜃𝑡𝑖 , 𝜃
𝑡−1

𝑔 ), (8)

𝜃𝑡+1𝑔 =

∑
𝑖∈𝑁 𝜃𝑡

𝑖∑
𝑖∈𝑁 𝑚𝑎𝑠𝑘𝑡

𝑖

, (9)

where 𝑚𝑎𝑠𝑘 (𝜃𝑖 , 𝜃𝑔) denotes submodel 𝜃𝑖 ’s mask (same shape as

the submodel 𝜃𝑖 ), 𝜃𝑔 denotes the aggregated model, 𝑁 denotes the

total number of clients. It sets the components of both 𝜃𝑖 and 𝜃𝑔
at the same position to 1 and 0 for the rest. The role of the mask

function𝑚𝑎𝑠𝑘 (𝜃𝑖 , 𝜃𝑔) is to calculate the frequency of each model

parameter 𝜃𝑖 selected by the global model 𝜃𝑔 in round 𝑡 . Later,

the mask function𝑚𝑎𝑠𝑘 (𝜃𝑖 , 𝜃𝑔) will be utilized in Eq. (9) to treat

those low-frequency parameters equally by suppressing the weight

of high-frequency parameters in the aggregation, which makes

each parameter play a fair role during the aggregation phase. For

example, the more the frequency of a selected parameter in round 𝑡 ,

the smaller the weight of the parameter to be aggregated in round

𝑡 + 1.

4.3 Fairness Guarantee

In Section 4.1, we delved into the fundamental concept underpin-

ning our definition of fairness. This concept centers on rewarding

high-contributing clients with high-performance submodels, where

a submodel’s improved performance correlates with the number of

neurons it contains. Consequently, this approach leads to a training

loss (i.e., model accuracy) that more closely aligns with the aggre-

gated model. It’s important to note that the submodel 𝜃𝑖 acquired

by client 𝑖 is determined based on its reputation 𝑟𝑖 across the entire

training process up to iteration 𝑡 .

Our primary result ensures a notion of fairness under specific

conditions concerning the loss function 𝐹 . If client 𝑖 holds a higher

reputation than client 𝑗 (𝑟𝑖 ≥ 𝑟 𝑗 ), and the submodel 𝜃𝑡
𝑖
obtained by

client 𝑖 encompasses the submodel 𝜃𝑡
𝑗
obtained by client 𝑗 (𝜃𝑡

𝑗
∈ 𝜃𝑡

𝑖
∈

𝜃𝑡𝑔). Then, the submodel 𝜃𝑡
𝑖
obtained by client 𝑖 will exhibit closer

alignment with the aggregated model 𝜃𝑡𝑔 in round 𝑡 . Letting 𝛿𝑡
𝑖

:=

| |𝜃𝑡𝑔 −𝜃𝑡𝑖 | |, it’s evident that 𝛿
𝑡
𝑖
⩽ 𝛿𝑡

𝑗
. Consequently, the submodel 𝜃𝑡

𝑖

obtained by client 𝑖 will yield a smaller loss function 𝐹 (𝜃 ) compared

to client 𝑗 in round 𝑡 .

Assumption 1 (𝐿-smooth F). If 𝐹 is 𝐿-smooth, then ∀𝜃𝑖 , 𝜃 𝑗 ∈ 𝜃 ,

𝐹 (𝜃𝑖 ) ⩽ 𝐹 (𝜃 𝑗 ) + ∇𝐹 (𝜃 𝑗 )𝑇 (𝜃𝑖 − 𝜃 𝑗 ) +
𝐿

2

| |𝜃𝑖 − 𝜃 𝑗 | |2 . (10)

Assumption 2 (𝜇-strongly convex F). If 𝐹 is 𝜇-strongly convex,
then ∀𝜃𝑖 , 𝜃 𝑗 ∈ 𝜃 ,

𝐹 (𝜃𝑖 ) ≥ 𝐹 (𝜃 𝑗 ) + ∇𝐹 (𝜃 𝑗 )𝑇 (𝜃𝑖 − 𝜃 𝑗 ) +
𝜇

2

| |𝜃𝑖 − 𝜃 𝑗 | |2 . (11)

Theorem 1 (Fairness in Training Loss). Assume Assumptions 1
and 2 hold, FedSAC can guarantee collaborative fairness by rewarding
high-contributing clients obtaining high-performance models. For-
mally speaking, let 𝛿𝑡

𝑖
:= | |𝜃𝑡𝑔 − 𝜃𝑡𝑖 | |. Suppose that 𝜃𝑡 is close to a

stationary point of 𝐹 for 𝑡 ≥ 𝑇 ∈ 𝑍+, and 𝐹 () is both 𝐿-smooth and
𝜇-strongly convex with 𝐿 ⩽ 𝜇. For all 𝑖, 𝑗 ∈ 𝑁 in round t, if 𝑟𝑖 ≥ 𝑟 𝑗 ,
it follows that 𝜃𝑡

𝑗
∈ 𝜃𝑡

𝑖
∈ 𝜃𝑡𝑔 , 𝛿𝑡𝑖 ⩽ 𝛿𝑡

𝑗
, and therefore 𝐹 (𝜃𝑡

𝑖
) ⩽ 𝐹 (𝜃𝑡

𝑗
).

The proof process is as follows:

From 𝐿-smoothness (ASSUMPTION 1), we have

𝐹 (𝜃𝑡𝑖 ) ⩽ 𝐹 (𝜃𝑡𝑁 ) + ∇𝐹 (𝜃
𝑡
𝑁 )

𝑇 (𝜃𝑡𝑖 − 𝜃
𝑡
𝑁 ) +

𝐿

2

𝛿2

𝑖,𝑡︸                                          ︷︷                                          ︸
𝑅𝐿

. (12)

From 𝜇-strongly convex (ASSUMPTION 2), we have

𝐹 (𝜃𝑡𝑗 ) ≥ 𝐹 (𝜃𝑡𝑁 ) + ∇𝐹 (𝜃
𝑡
𝑁 )

𝑇 (𝜃𝑡𝑗 − 𝜃
𝑡
𝑁 ) +

𝜇

2

𝛿2

𝑗,𝑡︸                                           ︷︷                                           ︸
𝑅𝜇

. (13)

In order to prove 𝐹 (𝜃𝑡
𝑖
) ⩽ 𝐹 (𝜃𝑡

𝑗
), it suffices to prove 𝑅𝐿 ⩽ 𝑅𝜇 or

equivalently 𝑅𝐿 − 𝑅𝜇 ⩽ 0.

𝑅𝐿 − 𝑅𝜇 = ∇𝐹 (𝜃𝑡𝑁 )
𝑇 (𝜃𝑡𝑖 − 𝜃

𝑡
𝑗 )︸                  ︷︷                  ︸

𝑅1

+ 1

2

(𝐿𝛿2

𝑖,𝑡 − 𝜇𝛿
2

𝑗,𝑡 )︸              ︷︷              ︸
𝑅2

. (14)

With 𝐿 ⩽ 𝜇 and 𝛿𝑖,𝑡 ⩽ 𝛿 𝑗,𝑡 , we have

𝑅2 =
1

2

(𝐿𝛿2

𝑖,𝑡 − 𝜇𝛿
2

𝑗,𝑡 ) ⩽
𝐿

2

(𝛿2

𝑖,𝑡 − 𝛿
2

𝑗,𝑡 ) ⩽ 0. (15)

We define 𝜃𝑡
𝑁

being close to a stationary point of F by establishing

an upper limit on the gradient:

| |∇𝐹 (𝜃𝑡𝑁 ) | | ⩽
𝐿 |𝛿2

𝑖,𝑡
− 𝛿2

𝑗,𝑡
|

2| |𝜃𝑡
𝑖
− 𝜃𝑡

𝑗
| |
. (16)
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Algorithm 1 FedSAC

Input: The global model 𝜃𝑔 , the local submodel 𝜃𝑖 , neurons 𝑖’s

importance 𝐼𝑛𝑖 , the number of local update steps 𝐸, learning

rate 𝜂𝑡 , number of clients 𝑁 , hyper-parameter 𝛽 , client’s con-

tribution 𝑐

1: Initialize the global model parameters 𝜃0

𝑔

2: for round 𝑡 = 0, 1, ...,𝑇 − 1 do

3: Compute 𝐼𝑡𝑛𝑖 (3) and (4) of 𝜃𝑡𝑔

4: Calculate the reputation 𝑟𝑖 of client 𝑘 : 𝑟𝑖 =
𝑒𝑐𝑖 ∗𝛽

𝑚𝑎𝑥 (𝑒𝑐∗𝛽 ) ∗ 100

5: Calculate Submodels 𝜃𝑡
𝑖
of clients 𝑖 in round 𝑡 : 𝜃𝑡

𝑖
=

𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 (𝑟𝑖 ,
∑
𝑛𝑖 ∈𝑆 𝐼

𝑡
𝑛𝑖
)

6: for each client 𝑖 ∈ 𝑁 do

7: for each iteration 𝑗 = 0, 1, ..., 𝐸 − 1 do

8: 𝜃𝑡
𝑖, 𝑗+1 ← 𝜃𝑡

𝑖, 𝑗
− 𝜂𝑡∇𝐹𝑖 (𝜃𝑡𝑖, 𝑗 )

9: end for

10: end for

11: Submodel 𝑖’s mask in round 𝑡 :𝑚𝑎𝑠𝑘𝑡
𝑖
=𝑚𝑎𝑠𝑘 (𝜃𝑡

𝑖
, 𝜃𝑡−1

𝑔 )
12: The server aggregates the received submodels: 𝜃𝑡+1𝑔 =∑

𝑖∈𝑁 𝜃𝑡
𝑖∑

𝑖∈𝑁 𝑚𝑎𝑠𝑘𝑡
𝑖

13: end for

We have the following:

|𝑅1 | ≜ |∇𝐹 (𝜃𝑡𝑁 )
𝑇 (𝜃𝑡𝑖 − 𝜃

𝑡
𝑗 ) |

⩽ | |∇𝐹 (𝜃𝑡𝑁 ) | | × | | (𝜃
𝑡
𝑖 − 𝜃

𝑡
𝑗 ) | |

⩽
𝐿 |𝛿2

𝑖,𝑡
− 𝛿2

𝑗,𝑡
|

2

⩽ |𝑅2 |,

(17)

where the first inequality is derived from the Cauchy-Schwarz, the

second inequality is by substituting the aforementioned upper limit

(refer to Eq. (16)), and the last inequality (line 1209) emerges from

taking the absolute values of two negative values (refer to Eq. (15)).

Finally, given that |𝑅1 | ⩽ |𝑅2 | and 𝑅2 ⩽ 0, we derive 𝑅1+𝑅2 ⩽ 0.

Therefore, it follows that𝑅𝐿−𝑅𝜇 ≜ 𝑅1+𝑅2 ⩽ 0, which subsequently

implies 𝐹 (𝜃𝑡
𝑖
) ⩽ 𝐹 (𝜃𝑡

𝑗
).

4.4 Convergence Analysis

In this section, we delve into the convergence analysis of the

proposed FedSAC. To guarantee convergence to the global opti-

mum, we make the assumption that each neuron in the aggregated

model is equally allocated over 𝑇 rounds. Consequently, the antici-

pated weight of the allocated submodel 𝜃𝑖 contracts towards the

aggregate model 𝜃𝑔 , i.e., 𝜃
𝑡+1
𝑖

= 𝑝𝑖𝜃
𝑡
𝑔 . Here, 𝑝𝑖 (0 ⩽ 𝑝𝑖 ⩽ 1) denotes

the long-term expectation of the size ratio between the submodel

𝑖 and the aggregate model obtained in multiple iterations. At this

stage, Eq. (9) can be expressed as the aggregation of each submodel

𝜃𝑖 divided by its respective 𝑝𝑖 , i.e., 𝜃
𝑡+1
𝑔 =

∑𝑁
𝑖=1

𝜃𝑡+1
𝑖

𝑝𝑖
. We present

THEOREM 2 below, which demonstrates that FedSAC enables the

convergence of the aggregation model. Assumptions 3 and 4 are

derived from the works [34, 35, 49, 56].

Assumption 3. Let 𝜉𝑡
𝑖
denote samples uniformly from the local

data of the 𝑖-th device at random. It is asserted that the variance of

stochastic gradients within each device remains constrained:

𝐸∥∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 ) − ∇𝐹𝑖 (𝜃

𝑡
𝑖 )∥ ⩽ 𝜎2

𝑖 , (18)

Assumption 4. The expected squared norm of stochastic gradi-
ents is uniformly constrained:

𝐸∥∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 )∥ ⩽ 𝐺2, (19)

where 𝑖 ∈ {1, 2, ...,N} and 𝑡 ∈ {1, 2, ...,𝑇 − 1}.

Assumption 5. Each neuron in the aggregation model is assigned
the same number of times after 𝑇 rounds. Therefore, the expected
weight of the allocated submodel 𝜃𝑖 is a contraction of the aggregate
model 𝜃𝑔 , i.e., 𝜃𝑡+1𝑖

= 𝑝𝑖𝜃
𝑡
𝑔 . Here, 𝑝𝑖 (0 ⩽ 𝑝𝑖 ⩽ 1) denotes the long-

term expectation of the size ratio between the submodel 𝑖 and the
aggregate model obtained in multiple iterations.

Theorem 2 (Asymptotic convergence). Given that As-
sumptions 1 to 5 hold and 𝐿, 𝜇, 𝜎𝑖 , 𝐺 , 𝑝 be defined therein. Choose
𝜅 = 2

𝜇 , 𝛾 =𝑚𝑎𝑥{8𝐿
𝜇 , 𝐸} − 1 and the learning rate 𝜂𝑡 = 2

𝜇 (𝛾+𝑡 ) . Then

FedSAC satisfies 𝐸 [𝐹 ( ¯𝜃𝑇 )] − 𝐹 ∗ ⩽ [ 𝐿
𝛾+𝑇 (

2𝐵
𝜇2
+ 𝛾+1

2
△1)].

The proof is shown in Appendix A.

4.5 Complexity and Communication Cost

Analysis

We further analyze the time complexity and communication

costs of FedSAC as follows.

For the time complexity, the primary computational demand

in FedSAC stems from evaluating neuron importance, as defined

in Eq. (3) and Eq. (4)). The time complexity for this evaluation is

𝑂 (𝑀), where 𝑀 denotes the total number of neurons across the

hidden layers of the global model.

For the communication cost, FedSAC mitigates the introduc-

tion of additional communication overhead by conducting neuron

importance evaluation solely on the server. This approach effec-

tively eliminates the necessity for client-server communication,

thereby enhancing overall efficiency. Moreover, it displays a com-

munication complexity of O(d*m) per round, as outlined in [8],

where m⩽1 denotes the average ratio of submodel parameters to

the global model. As a result, FedSAC showcases lower communi-

cation complexity compared to all baseline methods in cross-silo

FL scenarios [28]. More details about the communication cost ex-

periments are put in Appendix E.

4.6 Limitations

In Table 1 and Table 2, we conduct extensive experiments on var-

ious datasets and observe that FedSAC could exhibit a distinct

advantage over all baseline methods in terms of both fairness and

model accuracy. Nevertheless, the sufficient evaluation of neuron

importance (Section 4.1.1) within the submodel allocation module

imposes an additional computational burden. This problem may be

amplified for large models. Despite this challenge, we hold a strong

conviction that the substantial enhancements in both fairness and

accuracy achieved through by FedSAC clearly affirm its superiority

over baseline methods.
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5 EXPERIMENTS

In this section, we conduct comprehensive experiments to answer

the following research questions:

RQ1. How does the fairness of our FedSAC compare to various

state-of-the-art methods?

RQ2. How does the predictive model performance achieved by

our proposed method compare with the state-of-the-art methods

on different datasets?

RQ3. How do different components (i.e., submodel allocation

module and dynamic aggregation module) affect the results?

5.1 Experimental Settings

Datasets and Models. We evaluate the performance of FedSAC

on three commonly used public datasets in collaborative fairness,

including Fashion MNIST [13], CIFAR10 [12], and SVHN [27]. Fol-

lowing [14, 19, 39], we employ a feedforward neural network with

two hidden layers for all datasets.

Data splits.We construct five heterogeneous scenarios by vary-

ing the size and the class numbers of the dataset. For imbalanced

dataset sizes (POW) [22, 44], we randomly divide the total dataset

into various data sizes for each client by using a power law. For

CIFAR10, we partition the data set of size 20000 among 10 clients.

The clients with more extensive data sizes are expected to achieve

better prediction performance. For imbalanced class numbers

(CLA) [22, 44], we change the number of classes and keep them

have the same amount of data. For CIFAR10 with 5 clients, clients 1,

2, 3, 4, 5 own local training data with 1, 3, 5, 7, 10 classes respectively.

For imbalanced data size and class numbers (DIR), we provide

clients with various data sizes and classes by the Dirichlet distribu-

tion function [2, 6, 51, 52]. Specifically, we sample 𝑝𝑙
𝑖
∼ 𝐷𝐼𝑅(𝛼) and

assign a 𝑝𝑙
𝑖
percentage of the data of class 𝑙 to client 𝑖 , where𝐷𝐼𝑅(𝛼)

is the Dirichlet distribution with a parameter 𝛼 . More details on

the varying numbers of clients used in the experiment are put in

Appendix C.

Baselines.We compare FedSAC with the following methods:

(1) FedAvg [23] distributes the same model to all clients in each

FL iteration. In this case, Pearson Correlation Coefficient 𝜌 () in
Section 3.1 is uncomputable. To address this and create a person-

alized model for each client, we follow CFFL [22] and CGSV [44],

which enables clients to train for an additional epoch at the end of

FL algorithm. (2) q-FFL[17] enables the reweighting of loss across

different clients by the q-parameterized weights, thus reducing the

variance in the accuracy distribution and achieving a fairer distri-

bution of accuracy. (3) CFFL [22] allocates more gradients to higher

reputation client, and the reputation is calculated by the local accu-

racy and data sizes (or label diversity). (4) CGSV [44] assigns more

gradients to clients whose local model gradients is more similar

to the global gradients. (5) FedAVE [42] assigns more gradients to

clients whose data distribution information is more similar to the

ideal dataset. (6) Standalone [22] trains local models alone without

collaboration. Particularly, to evaluate more fairly, we make all

algorithms distribute rewards based on client contributions rather

than the calculated reputations.

Hyper-Parameters. We tune all hyper-parameters in datasets

by using grid search with FedAvg [23] and subsequently apply the

optimal parameters obtained from the validation dataset. The batch

size is 𝐵 = 64 for SVHN and 𝐵 = 32 for both FashionMNIST and

CIFAR10. The optimal parameters for SVHN, Cifar10, and Fashion-

MNIST of six scenarios are 𝐸 = {15, 20}, 𝜂 = {0.05, 0.1}, 𝛽 = {3, 5,

10}; 𝐸 = {15, 20}, 𝜂 = {0.03, 0.05}, 𝛽 = {3, 5, 10}, and 𝐸 = 20, 𝜂 = {0.03,

0.05}, 𝛽 = {1, 10, 20, 25}, respectively. For comparison, we select

the best fairness achieved by each method. The effects of hyper-

parameter 𝛽 on FedSAC are detailed in Appendix D (the smaller

𝛽 is, the higher the accuracy achieved by FedSAC). More details

about the hyper-parameters are put in Appendix F.

Implementation. All experiments are run on a 64 GB-RAM

Ubuntu 18.04.6 server with Intel(R) Xeon(R) CPU E5-2630 v4 @

2.20GHz and 1 NVidia(R) 2080Ti GPUs.

5.2 Experimental Results

Fairness (RQ1). To evaluate the FedSAC fairness, we compared

it with a few baselines on three datasets. Table 1 shows the fair-

ness metrics according to 𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 1. Standalone [22] trains local

models alone without collaboration, which represents the clients’

contributions. Table 1 indicates that our proposed dynamic sub-

model allocation mechanism achieves a fairness score above 95.73%

on all datasets, while the FedAvg performs poorly with the lowest

fairness score of -19.83%. On three datasets, the fairness of algo-

rithms (i.e., CFFL, CGSV, and FedAVE) exceeds 73.65% for the POW

and CLA scene. In these scenarios, the client’s contribution varies

greatly and is mainly related to the amount of data or diverse labels

of data. For the DIR scene, the data distribution among clients is sig-

nificantly uneven, resulting in a high degree of non-iid settings and

clients with relatively similar contributions. Consequently, CFFL,

CGSV, and FedAVE show low fairness, as the rewards received by

clients tend to be indistinguishable. In particular, in DIR (1.0) of

CIFAR10, our method outperforms CFFL, CGSV and FedAVE by

69.24%, 35.85%, and 40.71%, respectively.

Table 1 demonstrates that the proposed FedSAC outperforms

the state-of-the-art approaches in fairness, and validated the ef-

fectiveness of our method: high-contributing clients obtain high-

performance models. Figure 3 shows the comparison results of

overall performance to achieve bounded collaborative fairness with

state-of-the-art methods in CIFAR10 (left), SVHN (middle), and

Fashion MNIST (right). Obviously, FedSAC outperforms all base-

lines in terms of fairness.

Predictive performance (RQ2). To effectively assess the pre-

dictive performance of algorithms, we present our highest test ac-

curacies in comparison with all baseline methods in Table 2. These

results demonstrate the ability of the algorithms to reward high-

contributing clients with high-performance. First, comparing the

accuracy of FedSAC with Standalone (i.e., contribution) reveals that

FedSAC significantly outperforms Standalone. Second, among the

POW scene, FedSAC achieves the highest performance in CIFAR10,

SVHN and Fashion MNIST with accuracies of 48.61%, 74.84%, and

87.88%, respectively. Third, for the CLA scene on three datasets, the

highest accuracy is obtained by FedSAC, surpassing FedAvg by at

least 0.19%. In addition, in the extremely non-iid setting (e.g., DIR

(1.0) of SVHN), our method outperforms CFFL, CGSV, and FedAVE

by 2.17%, 5.06%, and 4.62%, respectively. Finally, for the DIR(2.0),

and DIR (3.0) scenes, FedSAC achieves comparable performance

to baseline methods in terms of accuracy. Specially, the notably
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Dataset CIFAR10 SVHN Fashion MNIST

No. Clients 10 10 10

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

FedAvg[23] 14.55±25.4 84.68±3.5 10.77±6.3 15.06±21.2 68.93±8.1 -19.24±26.7 71.42±13.0 58.56±4.0 50.95±13.5 31.43±19.0 -19.83±24.1 78.44±4.3 17.94±7.3 60.36±16.3 76.09±29.5
q-FFL[17] 34.91±15.1 98.74±0.5 90.89±1.5 89.01±1.5 73.02±2.5 67.97±11.6 93.05±1.0 82.11±1.8 86.87±4.7 89.41±2.1 42.69±9.8 88.99±0.3 73.19±6.0 83.93±0.7 79.99±7.3
CFFL[22] 93.55±1.3 89.99±0.8 29.90±3.6 81.82±0.8 59.86±3.0 96.38±1.5 95.63±0.4 46.91±5.7 38.58±2.5 31.35±8.3 90.94±0.5 86.50±0.7 85.90±0.9 85.09±1.3 71.10±0.3
CGSV[44] 90.78±0.6 91.04±0.8 63.29±3.6 84.59±1.6 84.75±0.2 90.99±0.4 87.22±0.6 72.09±0.2 72.19±0.2 76.31±0.2 95.34±0.3 73.65±2.6 82.91±3.6 82.91±3.6 84.95±1.3
FedAVE[42] 85.50±0.8 92.80±1.2 58.43±0.9 85.82±0.7 88.61±1.3 92.68±0.4 92.77±0.8 82.42±1.2 64.83±1.0 79.38±0.8 86.98±0.5 86.36±1.1 79.51±1.3 87.99±0.5 67.62±0.3
Ours 98.80±0.2 99.06±0.3 99.14±0.6 95.73±0.5 97.01±0.7 99.44±0.3 99.74±0.1 96.09±0.3 96.48±0.2 98.32±0.8 96.35±0.2 98.93±0.7 99.23±0.3 97.71±0.2 98.62±0.3

Table 1: Comparison results of fairness 𝜌 ∈ [−100, 100] with state-of-the-art methods on three datasets. The reported results are

averaged over 5 runs with different random seeds. (A higher value indicates better fairness. The best average result is marked

in bold. The second-best result is underlined. These notes are the same to others.)

Dataset CIFAR10 SVHN Fashion MNIST

No. Clients 10 10 10

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

Standalone 41.23±0.1 37.49±0.2 33.78±0.2 33.54±0.1 31.89±0.1 60.02±0.2 52.05±0.3 41.41±0.2 58.07±0.2 61.11±0.2 84.36±0.2 82.52±0.3 64.19±0.3 67.39±0.1 74.29±0.2
FedAvg[23] 48.36±0.2 42.64±0.5 48.84±0.1 49.49±0.5 49.72±0.5 74.16±0.2 68.25±0.1 77.75±0.2 78.17±0.1 81.35±0.1 87.64±0.2 85.42±0.0 87.32±0.1 87.27±0.2 88.25±0.2
q-FFL[17] 46.22±1.5 41.40±0.2 35.00±0.9 37.41±1.1 37.81±0.4 69.61±0.6 54.71±1.52 34.15±0.6 44.69±1.3 56.92±1.1 85.44±0.2 82.93±0.5 65.51±2.4 69.61±2.1 78.96±0.8
CFFL[22] 47.94±0.6 42.12±0.3 44.44±0.9 48.44±0.3 47.56±1.2 72.68±0.2 69.66±0.7 75.89±0.9 75.21±0.3 77.01±0.9 87.40±0.4 85.29±0.4 86.16±1.0 87.23±0.2 87.11±0.8
CGSV[44] 34.60±0.7 39.33±0.5 47.22±0.6 44.12±0.5 39.31±0.7 65.92±0.6 65.96±0.3 73.00±1.9 75.16±0.2 77.42±0.5 83.16±0.3 82.41±1.3 85.03±2.9 84.73±3.2 76.51±4.2
FedAVE[42] 46.51±0.2 35.18±1.5 46.60±0.6 39.20±1.2 40.60±1.8 70.80±0.5 65.10±0.6 73.44±0.6 73.43±0.3 75.48±0.7 86.18±0.6 79.86±1.2 76.66±0.8 80.90±1.3 67.74±0.8
Ours 48.61±0.2 44.16±0.2 49.06±0.6 50.01±0.2 49.85±0.3 74.84±0.2 70.51±0.8 78.06±0.1 78.55±0.1 81.95±0.4 87.88±0.2 85.61±0.3 87.85±0.1 87.54±0.4 88.38±0.4

Table 2: Comparison results of the maximum test accuracy (%) with state-of-the-art methods on three datasets. The reported

results are averaged over 5 runs with different random seeds. (A higher value indicates better accuracy.)
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Figure 3: Comparison results of overall performance to achieve bounded collaborative fairness with state-of-the-art methods

in CIFAR10 (left), SVHN (middle), and Fashion MNIST (right). (The closer the point is to the upper-right corner, the better the

performance.)

Dataset CIFAR10 SVHN Fashion MNIST

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

𝑤/𝑜 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 79.99 96.47 10.93 43.81 -14.61 96.88 94.88 31.86 64.94 82.58 91.05 96.09 84.57 79.14 65.53

𝑤/𝑜 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 98.64 98.13 99.22 84.81 83.59 99.00 99.20 95.66 96.05 87.65 93.72 97.45 97.32 27.40 91.43

𝐹𝑒𝑑𝑆𝐴𝐶 98.80 99.06 99.14 95.73 97.01 99.44 99.74 96.09 96.48 98.32 96.35 98.93 99.23 97.71 98.62

Table 3: Ablation studies on FedSAC for fairness 𝜌 ∈ [−100, 100] on three public benchmarks. A higher 𝜌 denotes better fairness.

poor accuracy of q-FFL appears attributed to its mechanism that of-

fers the same reward to all clients, without adapting these rewards

based on individual client contributions. Figure 4 illustrates the dis-

tributions of contributions and allocated rewards under scenes (i.e.,

DIR (1.0)) in CIFAR10 comparing FedSAC against baseline methods.

It demonstrates that FedSAC not only guarantees BCF but also

enables clients to receive rewards that exceed their contributions

(i.e., Standalone). In short, FedSAC outperforms all baselines in
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Dataset CIFAR10 SVHN Fashion MNIST

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

𝑤/𝑜 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 47.68 42.46 40.02 47.00 44.09 69.98 66.95 66.25 68.14 74.02 87.48 85.00 70.99 73.13 83.43

𝑤/𝑜 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 48.03 43.62 48.23 49.46 48.61 73.81 68.91 77.35 72.89 80.46 87.74 85.95 86.90 85.72 86.74

𝐹𝑒𝑑𝑆𝐴𝐶 48.61 44.16 49.06 50.01 49.85 74.84 70.51 78.06 78.55 81.95 87.88 85.61 87.85 87.54 88.38

Table 4: Ablation studies on FedSAC for the maximum test accuracy (%) on three public benchmarks.
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Figure 4: Comparison results of test accuracy using the data

partition of DIR (1.0) with state-of-the-art methods in CI-

FAR10 (up) and SVHN (down). Results of other scenes are in

Appendix D.

terms of accuracy. More results under different scenarios (i.e., CLA

scene) on CIFAR10 and SVHN are presented in Appendix B.

Figure 5 illustrates the changes in clients’ test accuracy as the

number of communication rounds increases in the POW, and CLA

data partition of CIFAR10 and SVHN. Owing to the varying data

sizes and diversity of labels owned by clients in FL, their contri-

butions to the system exhibit significant differences. As shown

in Figure 5, our proposed FedSAC, underpinned by a theoretical

guarantee, aims to reward high-contributing clients with high-

performance submodels by maintaining consistency in local mod-

els. As a result, each client will converge to a different model and

achieve varying levels of performance.

Ablation study (RQ3). To evaluate the effectiveness of two

proposed modules in FedSAC, a series of ablation experiments are

carried out on three public benchmarks with 10 clients, as shown

in Table 3 and 4. The operation of eliminating neuron importance,

denoted as 𝑤/𝑜 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, aims to treat all neurons equally and

allocate submodels based on their contributions.𝑤/𝑜 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛
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Figure 5: The test accuracy achieved by clients during train-

ing for CIFAR10 (left) and SVHN (right) in each round, under

the setting of POW and CLA.

denotes removing the dynamic aggregation module, which uses

the traditional FedAvg aggregation method to train. The effective-

ness of the submodel allocation module is demonstrated in Table 3,

indicating that this module can reward high-contribution clients

to obtain high-performance models. In particular, our method has

significantly improved the fairness measure by 88.21% on the DIR

(1.0) scene of the CIFAR10 dataset. Table 4 shows the results of

the proposed dynamic aggregation module, which implies that this

module can effectively aggregate submodels with different sizes,

thereby further improving the overall performance of the local

models. Thus, the ablation study demonstrates that the two de-

signed modules in FedSAC are crucial and significant in enhancing

bounded collaborative fairness.

In summary, all experimental results show that both fairness

and model accuracy are of significance for bounded collaborative

fairness, and our FedSAC outperforms all baseline methods in both

fairness and model accuracy.

6 CONCLUSION

In this work, we introduce a novel FL framework named FedSAC

that allocates submodels based on their contributions, thereby en-

suring bounded collaborative fairness and attaining superior local

accuracy while maintaining the consistency in local models. Our

method ensures that high-contributing clients can be rewarded

with high-performance submodels, which in turn enhances the

overall model accuracy. The experiments on three datasets show

that FedSAC exhibits a distinct advantage over baseline methods in

terms of fairness and accuracy. In the future, we aim to investigate

the implementation of FedSAC on large models.
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A. PROOF OF THEOREM 2

Let 𝐼𝐸 be the set of global synchronization steps, i.e., 𝐼𝐸 = {𝑛𝐸 |𝑛 =

1, 2, ...}. For convenience, We define 𝑣𝑡+1
𝑖

as the immediate result of

one step SGD update from 𝜃𝑡
𝑖
, i.e., 𝑣𝑡+1

𝑖
= 𝜃𝑡

𝑖
− 𝜂𝑡∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖
). 𝑔𝑡 =∑𝑁

𝑖=1

∇𝐹𝑖 (𝜃𝑡𝑖 )
𝑝𝑖

and 𝑔𝑡 =
∑𝑁
𝑖=1

∇𝐹𝑖 (𝜃𝑡𝑖 ,𝜉𝑡𝑖 )
𝑝𝑖

. Therefore, 𝑣𝑡+1 = ¯𝜃𝑡 − 𝜂𝑡𝑔𝑡
and 𝐸𝑔𝑡 = 𝑔𝑡 .

Lemma 3. (Result of one step SGD). Assume ASSUMPTION 1 and
ASSUMPTION 2. If 𝜂𝑡 ⩽ 1

4𝐿
, we have

𝐸∥𝑣𝑡+1 − 𝜃∗∥2 ⩽ (1 − 𝜂𝑡 𝜇)𝐸∥ ¯𝜃𝑡 − 𝜃∗∥2 + 𝜂2

𝑡 𝐸∥𝑔𝑡 − 𝑔𝑡 ∥2

+ 6𝐿𝜂2

𝑡 Γ + 2𝐸

𝑁∑︁
𝑖=1

∥ ¯𝜃𝑡 − 𝜃𝑡𝑖 ∥
2

𝑝𝑖
,

(20)

where Γ = 𝐹 ∗ −∑𝑁
𝑖=1

𝐹 ∗𝑖
𝑝𝑖
. LAMMA 3 has been made by [18].

For Assumption 3, the variance of stochastic gradients within

device 𝑖 is constrained by 𝜎2

𝑖
. Consequently,

𝐸∥𝑔𝑡 − 𝑔𝑡 ∥2 = 𝐸∥
𝑁∑︁
𝑖=1

1

𝑝𝑖
(∇𝐹𝑘 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖 ) − ∇𝐹𝑖 (𝜃

𝑡
𝑖 ))∥

2

=

𝑁∑︁
𝑖=1

1

𝑝2

𝑖

𝐸∥∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 ) − ∇𝐹𝑖 (𝜃

𝑡
𝑖 )∥

2

⩽
𝑁∑︁
𝑖=1

1

𝑝2

𝑖

𝜎2

𝑖 .

(21)

As FedSAC requires communication each 𝐸 steps. We let 𝜂𝑡 ⩽
2𝜂𝑡+𝐸 . Therefore, for any 𝑡 ≥ 0, there exists a 𝑡0 ⩽ 𝑡 , such that

𝑡 − 𝑡0 ⩽ 𝐸 − 1 and 𝜃
𝑡0

𝑖
= ¯𝜃𝑡0

for all 𝑘 = 1, 2, ..., 𝑁 . Then

𝐸

𝑁∑︁
𝑖=1

1

𝑝𝑖
∥ ¯𝜃𝑡 − 𝜃𝑡𝑖 ∥

2 = 𝐸

𝑁∑︁
𝑖=1

1

𝑝𝑖
∥(𝜃𝑡𝑖 − ¯𝜃𝑡0

) − ( ¯𝜃𝑡 − ¯𝜃𝑡0
)∥2

⩽ 𝐸

𝑁∑︁
𝑖=1

1

𝑝𝑖
∥𝜃𝑡𝑖 − ¯𝜃𝑡0

∥2

⩽ 𝐸

𝑡−1∑︁
𝑡=𝑡0

(𝐸 − 1)𝜂2

𝑡 ∥∇𝐹𝑘 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 )∥

2

⩽
𝑡−1∑︁
𝑡=𝑡0

(𝐸 − 1)𝜂2

𝑡0

𝐺2

⩽ 𝜂2

𝑡0

(𝐸 − 1)2𝐺2

⩽ 4𝜂2

𝑡 (𝐸 − 1)2𝐺2 .

(22)

Here in lines 1252-1256, we use 𝐸∥𝑋 − 𝐸𝑋 ∥2 ⩽ 𝐸∥𝑋 ∥2 where

𝑋 = 𝜃𝑡
𝑖
− ¯𝜃𝑡0

with probability
1

𝑝𝑖
. In the lines 1256-1259, we use

Jensen inequality:

∥𝜃𝑡𝑖 − ¯𝜃𝑡0
∥ = ∥

𝑡−1∑︁
𝑡=𝑡0

𝜂𝑡∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 )∥

2

⩽ (𝑡 − 𝑡0)
∑︁
𝑡−𝑡0

𝑡−1∑︁
𝑡−𝑡0

𝜂2

𝑡 ∥∇𝐹𝑖 (𝜃𝑡𝑖 , 𝜉
𝑡
𝑖 )∥

2 .

(23)

In lines 1259-1262, we utilize𝜂𝑡 ⩽ 𝜂𝑡0
for 𝑡 ≥ 𝑡0 and𝐸∥∇𝐹𝑘 (𝜃𝑡𝑖 , 𝜉

𝑡
𝑖
)∥2 ⩽

𝐺2
for 𝑖 = 1, 2, ..., 𝑁 . In the lines 1263-1265, we use 𝜂𝑡0

⩽ 2𝜂𝑡0+𝐸 ⩽
2𝜂𝑡 for 𝑡0 ⩽ 𝑡 ⩽ 𝑡0 + 𝐸.

Let △𝑡 = 𝐸∥ ¯𝜃𝑡 − 𝜃∗∥. Fromr Eq.(20), Eq. (21), and Eq. (22), it

follows that

△𝑡+1 ⩽ (1 − 𝜂𝑡 𝜇)△𝑡 + 𝜂2

𝑡

𝑁∑︁
𝑖=1

𝜎2

𝑝2

𝑖

+ 6𝐿𝜂2

𝑡 Γ + 8𝜂2

𝑡 (𝐸 − 1)2𝐺2

⩽ (1 − 𝜂𝑡 𝜇)△𝑡 + 𝜂2

𝑡 (
𝑁∑︁
𝑖=1

𝜎2

𝑝2

𝑖

+ 6𝐿Γ + 8(𝐸 − 1)2𝐺2)︸                                  ︷︷                                  ︸
𝐵

(24)

For a diminishing stepsize, 𝜂𝑡 =
𝜅
𝑡+𝛾 for some 𝜅 > 1

𝜇 and 𝛾 > 0

such that 𝜂1 ⩽ 𝑚𝑖𝑛{ 1

𝜇 ,
1

4𝐿
} = 1

4𝐿
and 𝜂𝑡 ⩽ 2𝜂𝑡+𝐸 . We will prove

△ ⩽ 𝑣
𝛾+𝑡 by induction, where 𝑣 = 𝑚𝑎𝑥{ 𝜅2𝐵

𝜅𝜇−1
, (𝛾 + 1)△1}. Firstly,

the definition of 𝑣 guarantees its applicability for 𝑡 = 1. Assuming

the conclusion holds for some 𝑡 , it follows that

△𝑡+1 ⩽ (1 − 𝜂𝑡 𝜇)△𝑡 + 𝜂2

𝑡 𝐵

⩽ (1 − 𝜅𝜇

𝑡 + 𝛾 )
𝑣

𝑡 + 𝛾 +
𝜅2𝐵

(𝑡 + 𝛾)2

=
𝑡 + 𝛾 − 1

(𝑡 + 𝛾)2
𝑣 + [ 𝜅2𝐵

(𝑡 + 𝛾)2
− 𝜅𝜇 − 1

(𝑡 + 𝛾)2
𝑣]

⩽
𝑡 + 𝛾 − 1

(𝑡 + 𝛾)2
𝑣 + 𝜅2𝐵

(𝑡 + 𝛾)2
− 𝜅2𝐵

(𝑡 + 𝛾)2
− 𝜅𝜇 − 1

(𝑡 + 𝛾)2 (𝛾 + 1)△1︸                   ︷︷                   ︸
⩽0

⩽
𝑣

𝑡 + 𝛾 − 1

(25)

Then by the 𝐿-smoothness (ASSUMPTION 1) of 𝐹 ,

𝐸 [𝐹 ( ¯𝜃𝑇 )] − 𝐹 ∗ ⩽ ( ¯𝜃𝑇 − 𝜃∗)𝑇 ∇𝐹𝑖 (𝜃∗)︸   ︷︷   ︸
=0

+𝐿
2

∥ ¯𝜃𝑇 − 𝜃∗∥22

=
𝐿

2

△𝑇

⩽
𝐿

2

𝑣

𝛾 +𝑇

(26)

We let 𝜅 = 2

𝜇 , 𝛾 =𝑚𝑎𝑥{8𝐿
𝜇 , 𝐸} − 1. In the lines 1293, we have

𝑣 =𝑚𝑎𝑥{ 𝜅2𝐵

𝜅𝜇 − 1

, (𝛾 + 1)△1}

⩽
𝜅2𝐵

𝜅𝜇 − 1

+ (𝛾 + 1)△1

⩽
4𝐵

𝜇2
+ (𝛾 + 1)△1

(27)

Substituting Eq. 27 into Eq. 26, we obtain

0 ⩽ lim

𝑇→∞
𝐸 [𝐹 ( ¯𝜃𝑇 )] − 𝐹 ∗ ⩽ lim

𝑇→∞
[ 𝐿

𝛾 +𝑇 (
2𝐵

𝜇2
+ 𝛾 + 1

2

△1)] = 0

(28)

Therefore, lim

𝑇→∞
𝐸 [𝐹 ( ¯𝜃𝑇 )] − 𝐹 ∗ = 0.



FedSAC: Dynamic Submodel Allocation for Collaborative Fairness
in Federated Learning Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

Dataset CIFAR10 Fashion MNIST

No. Clients 20 40 60 20

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) DIR(1.0) DIR(2.0) DIR(1.0) DIR(2.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

FedAvg[23] -40.52±3.3 83.57±1.4 18.41±16.3 77.52±1.5 44.13±16.0 79.53±13.9 54.37±11.1 51.64±17.8 55.22±6.8 -34.64±5.6 84.37±3.3 22.95±2.6 30.39±6.7 56.37±3.5
q-FFL[17] 14.10±2.8 98.09±0.2 83.98±2.0 86.14±2.9 90.00±0.5 87.81±1.6 80.46±1.1 80.65±2.9 85.76±1.2 29.24±5.3 98.44±2.6 81.75±4.8 77.45±5.6 72.89±3.9
CFFL[22] 81.45±1.0 95.93±0.8 76.72±2.1 76.09±1.3 63.79±0.5 50.33±1.2 49.61±0.6 86.59±1.3 87.52±0.5 88.02±0.4 92.29±2.5 72.74±2.4 78.40±1.2 75.36±1.6
CGSV[44] 83.30±1.8 96.80±0.1 79.85±0.9 79.73±1.3 85.72±0.4 82.90±0.4 80.47±0.7 85.91±1.2 77.91±0.8 83.85±0.4 94.04±0.8 88.32±2.5 83.68±1.1 74.15±1.7
FedAVE[42] 88.46±1.5 97.18±0.6 87.59±1.1 78.43±0.4 68.70±1.3 45.69±2.6 65.60±1.2 38.92±1.1 60.61±1.3 87.14±0.6 93.97±1.2 78.87±2.1 81.20±1.5 72.73±0.7
Ours 99.62±0.2 98.52±0.1 96.29±0.4 98.06±0.5 95.99±0.4 99.37±0.5 96.57±0.2 97.69±0.6 95.12±0.3 97.40±0.4 98.49±0.3 96.52±0.8 97.65±0.6 96.47±0.7

Table 5: Comparison results of fairness 𝜌 ∈ [−100, 100] with state-of-the-art methods on CIFAR10 and Fashion MNIST. The

reported results are averaged over 5 runs with different random seeds. (A higher value indicates better fairness. The best

average result is marked in bold. The second-best result is underlined. These notes are the same to others.)

Dataset CIFAR10 Fashion MNIST

No. Clients 20 40 60 20

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) DIR(1.0) DIR(2.0) DIR(1.0) DIR(2.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

Standalone 37.15±0.0 35.25±0.3 27.82±0.0 31.83±0.1 33.56±0.1 32.13±0.1 28.86±0.2 28.58±0.2 27.84±0.1 82.36±0.1 81.17±0.2 66.71±0.2 68.00±0.2 73.63±0.3
FedAvg[23] 46.94±0.2 41.14±0.6 48.31±0.5 49.00±0.5 50.13±0.3 48.19±0.3 49.57±0.3 49.06±0.1 49.30±0.3 87.29±0.3 84.67±0.2 87.46±0.0 88.06±0.1 88.04±0.1
q-FFL[17] 46.87±0.2 41.56±0.3 33.77±0.1 38.17±0.9 43.91±0.6 38.64±1.5 39.37±0.4 34.01±0.1 36.77±0.5 85.79±0.2 81.10±0.1 68.30±1.7 78.59±1.8 77.69±1.1
CFFL[22] 46.06±0.0 39.43±0.3 45.76±0.3 48.57±0.2 48.42±0.3 39.54±0.3 39.16±0.6 42.33±0.4 41.06±0.6 85.88±1.8 81.75±2.1 81.69±0.6 84.16±0.4 87.34±0.4
CGSV[44] 46.29±0.2 37.75±1.4 46.72±1.0 48.45±0.3 49.24±0.2 46.75±0.2 48.32±0.1 49.11±0.7 48.58±0.3 87.21±0.2 84.25±0.2 85.17±0.7 86.85±0.3 88.07±0.2
FedAVE[42] 46.43±0.6 40.99±0.2 46.64±0.6 48.34±0.5 48.13±0.6 46.58±0.4 46.73±0.3 47.29±0.8 49.21±0.6 87.44±0.1 84.79±0.5 79.53±0.9 84.47±0.4 86.83±0.1
Ours 48.60±0.7 43.39±0.2 49.41±0.1 49.09±0.1 50.48±0.1 48.64±0.3 49.68±0.4 49.23±0.1 49.34±0.2 87.60±0.1 84.99±0.3 87.57±0.6 88.08±0.3 88.17±0.3

Table 6: Comparison results of the maximum test accuracy (%) with state-of-the-art methods on CIFAR10 and Fashion MNIST.

The reported results are averaged over 5 runs with different random seeds. (A higher value indicates better accuracy.)
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Figure 6: Comparison results of test accuracy using the scene

of POW, CLA, and DIR(2.0) with state-of-the-art methods in

CIFAR10 (left) and SVHN (right). In terms of accuracy across

clients, FedSAC exhibits the highest level of consistency with

the contribution.

B. FINAL REWARDS OF CLIENTS

Figure 6 shows the distributions of contributions and the final re-

wards of clients under different scenes (i.e., POW, CLA, DIR (2.0)

in CIFAR10 and SVHN) by FedSAC and the compared methods.

Scene POW DIR(1.0) DIR(2.0) DIR(3.0)

𝐹𝑒𝑑𝑆𝐴𝐶 (𝛽 = 2) 49.23(44.77) 49.66(39.53) 50.60(37.87) 51.37(43.19)

𝐹𝑒𝑑𝑆𝐴𝐶 (𝛽 = 5) 48.43(37.73) 49.10(35.76) 50.01(30.91) 49.85(38.46)

𝐹𝑒𝑑𝑆𝐴𝐶 (𝛽 = 10) 48.61(30.91) 49.06(31.36) 47.08(23.72) 49.04(28.54)

𝐹𝑒𝑑𝑆𝐴𝐶 (𝛽 = 20) 46.53(24.10) 46.98(28.41) 43.50(20.17) 46.03(25.70)

Table 7: The maximum test accuracy (%) achieved by FedSAC

across different 𝛽, given a fairness threshold of 𝜌 > 95%,

on CIFAR10. Values in the middle brackets represent the

minimum test accuracy (%) among 10 clients.

Existing methods allocate rewards to clients lack sufficient differ-

entiation, resulting in an ongoing unfairness for high-contributing

clients. For example in SVHN-CLA (Figure 6 (d)), the contributions

(i.e., Standalone) of 𝐶𝑙𝑖𝑒𝑛𝑡3 and 𝐶𝑙𝑖𝑒𝑛𝑡10 differ significantly. How-

ever, CFFL and CGSV do not exhibit a substantial difference in the

rewards assigned to them. In addition, FedSAC effectively differen-

tiates the rewards it received, thereby ensuring the collaborative

fairness in FL.

C. VARYING NUMBERS OF CLIENTS

To verify the effectiveness of FedSAC in scenarios with varying

numbers of clients, we conduct experiments by increasing the num-

ber of local clients to 20, 40, and 60, respectively. Table 5 presents

the fairness results achieved by FedSAC and the compared meth-

ods, while Table 6 shows the maximum local model performance
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Dataset CIFAR10 SVHN Fashion MNIST

No. Clients 10 10 10

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

FedAvg[23] 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 7.97 7.97 7.97 7.97 7.97

q-FFL[17] 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 7.97 7.97 7.97 7.97 7.97

CFFL[22] 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 7.97 7.97 7.97 7.97 7.97

CGSV[44] 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 7.97 7.97 7.97 7.97 7.97

FedAVE[42] 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 26.27 7.97 7.97 7.97 7.97 7.97

Ours 23.57 23.58 23.39 24.02 23.63 20.86 22.31 23.85 15.51 21.75 6.89 7.28 5.30 4.77 5.23

Table 8: Comparison on communication costs (MB per round) of FedSAC and the baselines framework.

Dataset CIFAR10 SVHN Fashion MNIST

No. Clients 10 10 10

Scene POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0) POW CLA DIR(1.0) DIR(2.0) DIR(3.0)

𝜂 0.05 0.05 0.05 0.03 0.03 0.03 0.05 0.05 0.05 0.05 0.1 0.05 0.05 0.05 0.05

𝐸 15 20 20 20 20 20 20 20 20 20 20 20 20 20 15

𝛽 5 3 10 2 10 5 3 5 10 5 10 1 10 20 25

Table 9: The optimal hyperparameters in given scenarios. Learning rate 𝜂, the number of local update steps 𝐸, hyper-parameter

𝛽 . Batch sizes 𝐵 are set as 32, 64, and 32 for CIFAR10, SVHN, and FashionMNIST, respectively.

achieved by these methods. In the large client number settings (No.

Clients = 20, 40, and 60), FedSAC outperforms all baseline methods

in terms of fairness (refer to Table 5) and accuracy (refer to Table 6).

The results demonstrate that FedSAC can effectively implement

bounded collaborative fairness in scenarios with varying numbers

of clients.

D. THE IMPACT OF 𝛽 ON THE EXPERIMENT

In Table 7, we present the performance of FedSAC with different

values of 𝛽 on each scene of CIFAR10. The experiments demon-

strate that as 𝛽 increases, the maximum test accuracy will gradually

decrease. This is because the size of the submodels downloaded by

clients increases as 𝛽 decreases. When 𝛽 is small, the submodels of

low-contribution clients contain more neurons, enabling effective

training to enhance all local model performance.

E. THE COMMUNICATION COST EXPERIMENTS

The most works on collaborative fairness require full clients’ infor-

mation [22, 43, 44], which will inevitably introduce large communi-

cation overhead and computation cost. In addition, this communica-

tion and computation overhead of full sampling problem is tolerable

for most cases in cross-silo FL scenarios [4], such as healthcare and

finance, because there are only dozens of clients in cross-silo FL

scenarios. In the Table 8, the results show that our FedSAC demon-

strates less communication costs than all the baseline methods in

three datasets across all settings. In addition, our FedSAC does not

introduce additional communication, because the evaluation of neu-

ron importance is conducted on the server without communicating

with clients, effectively preventing any communication overhead.

In the Table 8, FedSAC exhibits a communication complexity of

O(d*m) per round [8], where m<=1 represents the average ratio

of the parameters of the submodel compared to the global model.

In conclusion, all baseline methods show a higher communication

complexity of O(d) than FedSAC.

F. DETAILS ON HYPER-PARAMETERS

For each dataset, the local data of each client was partitioned into

training and validation sets. Then, we tuned each dataset hyper-

parameters by using grid search with FedAvg. Subsequently, we

applied the optimal parameters obtained from the validation dataset.

The optimized hyper-parameters for scenarios (i.e., POW, CLA,

DIR(1.0), DIR(2.0), and DIR(3.0)) are shown in Table 9.
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