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Abstract

Federated learning (FL) is emerging as a promising tech-
nique for collaborative learning without local data leaving
their devices. However, clients’ data originating from di-
verse domains may degrade model performance due to do-
main shifts, preventing the model from learning consistent
representation space. In this paper, we propose a novel
FL framework, Federated Domain Shift Eraser (FDSE),
to improve model performance by differently erasing each
client’s domain skew and enhancing their consensus. First,
we formulate the model forward passing as an iterative
deskewing process that extracts and then deskews features
alternatively. This is efficiently achieved by decomposing
each original layer in the neural network into a Domain-
agnostic Feature Extractor (DFE) and a Domain-specific
Skew Eraser (DSE). Then, a regularization term is applied
to promise the effectiveness of feature deskewing by pulling
local statistics of DSE’s outputs close to the globally con-
sistent ones. Finally, DFE modules are fairly aggregated
and broadcast to all the clients to maximize their consen-
sus, and DSE modules are personalized for each client via
similarity-aware aggregation to erase their domain skew
differently. Comprehensive experiments were conducted on
three datasets to confirm the advantages of our method in
terms of accuracy, efficiency, and generalizability.

1. Introduction
Federated learning has emerged as a promising paradigm
for training machine learning models on distributed data
while preserving privacy [27]. However, a notable chal-
lenge arises when clients originate from diverse domains,
where domain shifts across clients may result in perfor-
mance degradation of the aggregated model [4, 12]. For
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Figure 1. Inllustration of the characteristic of the proposed
FDSE v.s. Vallina FL [27]. FDSE decomposes the model to re-
spectively erase domain skew for each client by f

(i)
DSE and extract

generalizable features for all the clients by fDFE . This promotes
consistency in representation space across domains since knowl-
edge is fine-grainedly decoupled for learning and aggregation.

example, hospitals located in different regions may collect
data from diverse patient populations using various ma-
chines and protocols, leading to distinct domains in their
feature distributions [22]. The misalignment in feature
spaces can hinder client consensus on the representation
space (e.g., Figure 1 left), finally reducing model perfor-
mance in two ways. First, the model is compelled to ad-
ditionally learn generalizable representations for vastly dif-
ferent samples across domains, competitively preventing it
from focusing on the task objective. Second, the training
process may be dominated by a single domain when clients’
model updates exhibit conflicts and substantial variations in
magnitude [5, 42], which causes the model to overfit on the
prevailing domain while sacrificing its utility on others [11].

Recent works addressing the FL domain shift problem
can be categorized into two main groups. The first group
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(i.e., consensus-based methods) [5, 41, 49] enhances the
consensus among clients at various levels to improve the
model generalizability across domains. In contrast, another
group (i.e., personalization-based methods) [22, 23, 37]
mitigates the need for clients’ consensus by personaliz-
ing their models to fit their local data distributions. Since
the two groups exhibit complementary strengths in model-
ing different types of knowledge (i.e., general and personal
knowledge), it’s natural to consider a hybrid solution that
synergizes their advantages for further improvement. How-
ever, model personalization may severely hinder clients’
consensus due to over-focusing on clients’ local benefits,
thereby resulting in invalid integration. This motivates us to
rethink the FL domain shift from the hybrid perspective

How to personalize models to enhance clients’ consensus?

In this work, we address this issue by using personal-
ized parameters to erase domain-specific skew for each
client while enhancing clients’ consensus on other pa-
rameters based on two key observations. First, visual
learning tasks often mitigate samples’ domain-specific skew
differently. For example, in point cloud segmentation, high-
density and low-density point clouds from channel-varying
lidars are respectively downsampled and upsampled to
achieve their alignment in feature space [44]. These inher-
ently opposing processes of feature alignment necessitate
personalized modeling. Second, a unified treatment is usu-
ally applied to different samples after their domain-specific
skew is mitigated [12, 14, 44], revealing the importance of
achieving post-deskewing consensus in a domain-agnostic
way. Following the above paradigm, we develop a novel
FL framework, Federated Domain Shift Eraser (FDSE),
aiming to differently erase clients’ domain-specific skew
and then enhance their consensus in a decoupled manner.
First, we formulate the model forward passing as an it-
erative deskewing process that extracts and then deskews
features alternatively. This is efficiently achieved by de-
composing each original layer in the neural network into a
Domain-agnostic Feature Extractor (DFE) and a Domain-
specific Skew Eraser (DSE). Then, a regularization term
is applied to enhance the effectiveness of feature deskew-
ing by pulling local statistics of each DSE’s output close
to the globally consistent ones. Finally, DFE modules are
fairly aggregated and broadcast to all the clients to maxi-
mize their consensus, while DSE modules are respectively
aggregated for each client based on their similarity to erase
heterogeneous domain skew collaboratively. Compared to
the Vallina FL in Figure 1 (left), our FDSE benefits from
the design that emphasizes fine-grained personalization and
consensus maximization on decoupled objectives, promot-
ing both the consistency in the representation space and the
efficiency of aggregating different types of knowledge. Our
contributions are summarized as follows:

• We rethink the domain shift problem in FL from a novel
hybrid perspective that integrates the advantages of two
distinct sets of existing methods, i.e., consensus-based
and personalization-based methods.

• We develop a novel framework, FDSE, to improve cross-
domain FL by differently erasing clients’ domain skew
while enhancing their consensus in a decoupled manner.

• We conduct comprehensive experiments on three datasets
(i.e., Office-Caltech10, PACS, and DomainNet) to con-
firm FDSE’s superiority in terms of accuracy, efficiency,
and generalizability against the state-of-the-art methods.

2. Related Works

2.1. Data Heterogeneity in FL
FL often faces challenges due to data heterogeneity, compli-
cating the training process and degrading overall model ac-
curacy [27, 47]. Previous efforts have been devoted to han-
dling heterogeneous data by maintaining consistency be-
tween local objective and global objective [1, 16, 19, 20]
or smoothening the clients’ loss landscape during model
training [6, 29, 34, 38]. Another series of works instead fo-
cuses on enhancing models’ local performance under data
heterogeneity via model personalization techniques, such
as partial parameter sharing [13, 23, 37], meta-learning[8,
21], latent representation space alignment[31, 41], hyper-
network[36], and knowledge decoupling[3, 45]. Neverthe-
less, most of these methods are naturally designed for and
verified in label skew scenarios [15], overlooking the do-
main shift problem and resulting in suboptimal performance
in cross-domain scenarios [5].

2.2. Cross-domain FL
Cross-domain FL refers to FL with clients whose datasets
come from different domains [5, 12, 14, 22, 24, 33, 37, 49].
The domain shift across clients’ datasets can hinder the
FL model training process, leading to model performance
degradation [5]. Previous methods addressing this issue can
be mainly grouped into two sets. Methods in the first set
focus on maximizing different clients’ consensus across do-
mains at different levels. For example, [14] exchanges a few
local data information across clients to normalize their sam-
ples in the frequency space at the input level. [49] increases
the visibility of all domains’ samples to each client during
local training by feature augmentation in the intermediate
layers of the model, leading to improved global consensus
at the feature level. [12, 41] maintain consistent class pro-
totypes before the output layers of the model to increase
clients’ consensus in the representation space. [5] instead
enhances clients’ consensus directly at the model parameter
level by minimizing the conflicts of model updates of im-
portant parameters. Another set of methods uses model per-
sonalization techniques to help suit the global model to their



local domain skew. [22] keeps batch normalization layers
to be locally maintained to make the model more adaptable
to their personal domains. [37] adaptively loads partial pa-
rameters instead of the entire model for each local training.
Despite the rapid development of the two sets of methods
respectively, the way to integrate the advantages of the two
sets still remains unexplored, leading to a potentially large
space for further performance improvement.

To this end, we rethink the domain shift problem in FL
from a hybrid view of existing methods (e.g., consensus en-
hancement and personalization). Different from previous
studies, we fine-grained identify what should be personal-
ized (e.g., domain-specific skew erasing) and on which the
consensus should be maximized (the treatment to deskewed
features), thus successfully bridging the two distinct in-
sights behind existing approaches.

3. Problem Formulation

Personalized FL. In personalized FL, there exist N
clients equipped with their private data {Di|i ∈ [N ]}, and
the goal is to obtain a series of model Θ = {θ1, θ2, ..., θN}
that minimize

min
Θ

=
∑
i∈[N ]

|Di|
|D|

Fi, Fi = E(x,y)∼Di
[ℓ(θi;x, y)] (1)

where |D| =
∑N

i=1Di and ℓ(·) is the loss function. In this
paper, we consider one popular scheme of personalized FL
where some parameters are globally shared among all the
clients and the others are privately kept [2, 13]. Let θi =
[θu; θv,i], we denote θu the globally shared parameters and
θv,i the personalized ones.

Cross-domain FL Cross-domain FL [5, 49] refers to FL
with clients that exhibit domain shift among their local
datasets. The domain shift means that different clients share
the consistent label space P(Y ) but differ in conditional fea-
ture distribution P(X|Y ) given Y (e.g., Pi(X|Y = y) ̸=
Pj(X|Y = y),∀i ̸= j, i, j ∈ [N ]).

4. Methodology

In this section, we present the main procedure and imple-
mentation of FDSE. We begin by illustrating the layer de-
composition approach, which allows us to decouple the per-
sonalized domain skew erasing from the common task ob-
jective by assigning them to different model parameters in
Sec. 4.1. Next, we introduce the consistency regularization
used during clients’ local training to enhance the effective-
ness of feature deskewing in Sec. 4.2. Finally, we discuss
the model aggregation strategies respectively for common
and personalized parameters in Sec. 4.3.

4.1. Layer Decomposition
As aforementioned in Sec.1, we personalize partial model
parameters for each client to erase their domain-specific
skew. Existing deskewing methods usually align cross-
domain features at a certain layer of the neural network.
For example, [14, 44] align samples’ attributions in the fea-
ture space before feeding them into the model, and [23, 41]
mitigate the domain divergence in the representation space
at the output layer. However, premature deskewing (e.g.,
the input layer) may lead to insufficient skew elimination
while the too-delayed one (e.g., the output layer ) can hin-
der domain-agnostic knowledge extraction. Therefore, in-
stead of only deskewing features at a certain layer, we view
the model forward passing as an iterative deskewing pro-
cess that extracts and then deskews features alternatively.
This is efficiently achieved by decomposing each original
layer in the neural network into a Domain-agnostic Fea-
ture Extractor (DFE) and a Domain-specific Skew Eraser
(DSE), as is shown in Figure 2. Concretely, given a con-
volution layer f with filter size k, input channel number S,
and output channel number T , we follow [10] to decom-
pose it into two sub-convolution modules fDSE ◦fDFE where
each submodule consists of a convolution, a batch normal-
ization layer, and an activation function. The DFE module
shares parameters with the original layer f (e.g., kernel size,
stride, and padding) except for the number of output chan-
nels TDFE = ⌈T/G⌉ by

XDFE = fDFE ∗X (2)

where XDFE ∈ RTDFE×h×w, h,w are respectively the height
and the weight of the original output f(X) and G is the
architecture parameter. Then, the DFE module maps each
channel in the DFE module’s output into G channels via
cheap linear operations by

XDSE,i = fDSE,i ∗ ReLU (BNDSE (XDFE,i)) , i ∈ [TDFE]

Xout = ReLU (BNDFE (Concat({XDSE,i}))) (3)

where XDFE,i ∈ R1×h×w,XDSE,i ∈ RG×h×w,Xout ∈
RT×h×w, and each fDSE,i augments each channel XDFE,i to
G channels. Although there have been plenty of works that
decompose convolution layers for efficiency [28, 39, 40],
this layer separation has the natural advantage for our ob-
jective decoupling purpose. On one hand, the core com-
ponents of the output features are independently extracted
by the DFE module, each of which is then cheaply ex-
panded to several similar variants by the DSE module. This
paradigm enables the DFE module to learn the primary
knowledge (e.g., the core components of feature maps),
making it suitable for modeling domain-agnostic informa-
tion. On the other hand, the simplicity of the DSE module
avoids over-transforming features during deskewing pro-
cesses, e.g., 94× smaller than the DFE module in a convolu-
tion with 64 channels and kernel size 5. We further enhance



Figure 2. The overview of the FDSE framework.

the knowledge decoupling for the two modules via regular-
ization term in Sec.4.2 and the parameter sharing strategy
in Sec.4.3.

4.2. Consistency Regularization

To make the DSE module focus on erasing domain-specific
skew for each client, we consider regularizing the DSE
module’s output features during clients’ local training. Sup-
posing that the lth DSE module f

(k,l)
DSE in the model has ide-

ally erased the domain skew for the kth client’s local data,
then the BN layer of the next DFE module BN(k,l)

DFE cannot
infer the samples’ domain via the distribution of the seen
data when there is no label skew. Based on this insight, we
manually pull the statistics of DSE’s output to be close to
the global statistics of the corresponding DFE module, thus
enhancing the deskewing characteristic of the DSE module
from the statistical view. Specifically, given the bth batch
feature X

(l)
k,b, |X

(l)
k,b| = B fed to the lth layer of the model,

we first compute its statistics (i.e., mean and variance) by

µ
(l)
k,b =

1

B

B∑
i=1

X
(l)
k,b,i, σ

(l)2
k,b =

1

B

B∑
i=1

(
X

(l)
k,b,i − µ

(l)
k,b

)2
(4)

Then, we estimate the local running statistics by exponen-
tial averaging with the momentum coefficient γ of BNDFE
during local training

µ̂
(l)
k,b = γµ̂

(l)
k,b−1 + (1− γ)µ

(l)
k,b

σ̂
(l)2
k,b = γσ̂

(l)2
k,b−1 + (1− γ)σ

(l)2
k,b (5)

The local statistics of the lth layer are finally pulled close to
the global ones by

L(l)
Con =

1

d

∥∥∥µ̂(l)
k,b − µ(l)

g

∥∥∥2 +(∥σ̂(l)2
k,b ∥1 − ∥σ

(l)2
g ∥1

d

)2

(6)

where µ
(l)
g , σ

(l)
g are the corresponding layer’s global statis-

tics in the received global model and d is the feature di-
mension. In this way, both the centers and the sizes of
the clients’ feature spaces are regularized to be consistent.
This rule is then applied to each DSE module in a depth-
increasing manner, as formulated in the consistency regu-
larization term

LCon =
L∑

l=1

wlL(l)
Con,w.r.t., wl =

exp (βl)∑L
l=1 exp (βl)

(7)

where L is the number of DSE modules and β is the hyper-
parameter that enables gradual features deskewing across
layers. A smaller β can strengthen feature deskewing by
emphasizing each layer’s statistical consistency. We fix β =
0.001 in practice and only tune the coefficient λ that scales
the regularization term to balance the task objective and the
regularization. In addition, this consistency regularization
can help adapt the trained model to new unseen domains
without any labels, where we fine-tune the DSE modules to
minimize the regularization loss as depicted in Sec. 5.4.

4.3. Model Aggregation
We use different strategies to aggregate the two fundamen-
tal components of FDSE (e.g., DFE and DSE). For the DFE



modules, we share them among all the clients and aggregate
them through a fair layer consensus maximization mecha-
nism. For the DSE modules, we personalized them for each
client based on similarity-aware aggregation to erase het-
erogeneous domain skew collaboratively. As a result, the
varying degrees of parameter sharing further facilitate the
distinct knowledge acquisition of the DFE and DSE mod-
ules in a decoupled manner, as the local knowledge encoded
in the DFE modules is much more frequently smoothed over
all the clients than the DSE modules. We illustrate the de-
tails of the two aggregation strategies below.

4.3.1. Consensus Maximization

We remark that DFE modules are designed to model
domain-agnostic knowledge. However, model updates from
different clients may largely conflict with each other due to
severe domain shifts [5, 11, 42], preventing the model from
learning domain-agnostic knowledge by biasing the training
process towards the dominant clients. To this end, we pro-
pose to maximize client consensus when aggregating fully
shared parameters (e.g., DFE modules and the task head) to
enhance domain-agnostic knowledge learning. Motivated
by the multi-gradient-descent-algorihtm [7, 11] that opti-
mizes the model update to be harmonies with each client’s
update, we minimize the L2-norm of the aggregated update
for each layer to maximize layer-wise consensus. Specif-
ically, given clients’ local updates on DSE modules and
heads {∆θ

(l)
u,k}, k ∈ [N ], we aggregate them by

d̄(l)u =
1

N

N∑
k=1

∥∆θ
(l)
u,k∥2,d

(l)
u,k =

∆θ
(l)
u,k

∥∆θ
(l)
u,k∥2

∆θ(l)u = d̄(l)u

N∑
k=1

u
(l)
k d

(l)
u,k,u

(l) = argminu∥
N∑

k=1

ukd
(l)
u,k∥

2
2

(8)

where ∆θ
(l)
u ·∆θ

(l)
u,k ≥ 0,∀k is guaranteed by the above op-

timization objective [7]. This aggregation scheme enhances
the consensus in model updates across clients without sac-
rificing anyone’s benefit. Besides, this process is indepen-
dently repeated for different layers since simply mitigating
conflicts at the model level cannot prevent the final update
from favoring parts of clients at some layers, reducing the
layer utility for those clients [32].

4.3.2. Similarity-aware Personalization

To enable collaboratively erasing domain skew for clients
from similar domains, we aggregate each DSE module’s
parameters with a self-attention module on the server side
based on clients’ similarity. Given clients’s parameters of
the lth DSE module {θ(l)v,k, k ∈ [N ]}, we aggregate them by

Algorithm 1 Federated Domain Shift Eraser
Input:The global modelM, the number of local epochs E,
and the learning rate ηt

1: Decompose the initial model into globally shared pa-
rameters θ0u and personalized parameters θ0v in Sec. 4.1

2: Initialize clients’ personalized parameters θ0v,k =

θ0v,∀k ∈ [N ]
3: for communication round t = 0, 1, ..., T − 1 do
4: The server broadcasts the model θtk = (θtu, θ

t
v,k) to

each client k.
5: for each client k ∈ [N ] do
6: for each iteration i = 0, 1, ..., E − 1 do
7: Compute loss Lk = Ltask + λLCon
8: θtk,i+1 ← θtk,i − ηt∇Lk(θ

t
k,i)

9: end for
10: Client k send the model parameters θt+1

k = θtk,E
to the server.

11: end for
12: The server respectively aggregates the received glob-

ally shared model parameters θt+1
u by Eq. (8) and

personalized model parameters
[
θt+1
v,k

]⊤
by Eq. (9)

13: end for

Ql = Kl =

[
Vlk

∥Vlk∥2

]⊤
|k=1 to N ,Vl =

[
θ
(l)
v,1, · · · , θ

(l)
v,N

]⊤
[
θ
(l)
v,1,next, · · · , θ

(l)
v,N,next

]⊤
= softmax

(
QlK

⊤
l

τ

)
Vl (9)

where τ is the temperature parameter controlling the degree
of personalization of DSE modules (e.g., smaller τ corre-
sponds to a higher personalization degree and stronger skew
elimination). We also perform the personalized aggregation
independently for each layer’s DSE module, since the opti-
mal personalization degree may vary across layers [26]. For
the non-trainable statistical parameters, we did not aggre-
gate them for BNDSE and directly average them for BNDFE.
The pseudo-code of FDSE is summarized in Algorithm 1.

5. Experiments

5.1. Setup
Dataset & Model. We evaluate our method on three
popular multi-domain image classification tasks: Office-
Caltech10 [37], DomainNet [17], and PACS [48]. We fol-
low [22, 49] to use AlexNet as the backbone for these
datasets and allocate a single domain’s data to each client
respectively for all three datasets.



Method
Domainnet Office-Caltech10 PACS

ALL AVG ALL AVG ALL AVG

Local 57.10±0.32 52.96±0.33 64.47±2.52 62.72±7.81 61.29±2.47 57.16±2.85

FedAvg (AISTATS 2017) 69.17±0.46 67.53±0.41 82.60±3.14 86.26±2.54 74.30±1.90 72.10±1.42

LG-FedAvg (NIPSW 2019) 71.13±0.30 67.97±0.32 82.69±0.53 87.29±1.32 79.11±0.69 76.72±0.54

FedProx (MLSys 2020) 68.81±0.71 67.47±0.66 82.69±1.52 87.36±1.87 74.38±1.55 72.33±1.53

Scaffold (ICML 2020) 70.41±0.40 69.06±0.43 80.86±2.43 85.87±1.87 76.30±0.93 74.26±0.95

FedDyn (ICLR 2021) 70.02±0.57 68.86±0.54 82.77±1.82 87.80±1.96 74.92±1.29 73.19±1.01

MOON (CVPR 2021) 68.35±0.32 66.65±0.29 80.12±1.86 82.48±1.71 75.00±0.32 72.13±0.32

Ditto (ICML 2021) 75.18±0.37 72.82±0.35 84.12±1.32 88.72±1.28 82.02±1.32 80.03±1.37

PartialFed (NIPS 2021) 75.92±0.24 73.46±0.41 82.70±2.12 88.33±2.17 81.22±0.98 79.18±1.09

FedBN (ICLR 2021) 74.75±0.24 72.25±0.20 83.08±1.84 87.01±1.30 81.58±0.79 79.47±0.69

FedFA (ICLR 2023) 69.47±0.29 67.60±0.29 82.98±2.84 86.69±3.02 75.44±0.71 73.60±0.86

FedHeal (CVPR 2024) 69.43±0.71 67.96±0.65 81.73±3.19 86.29±2.71 75.46±0.84 73.51±0.83

FDSE (Ours) 76.77±0.41 74.50±0.40 87.15±2.06 91.58±2.01 83.81±1.70 82.17±1.49

Table 1. Comparison of model testing accuracy (%)↑ on DomainNet, Office-Caltech10, and PACS datasets. The optimal results are marked
by bold. ALL refers to the model testing accuracy on all clients’ local testing samples and AVG refers to the mean of of clients’ local
testing accuracies. Each result is averaged over 5 trials with different fixed random seeds.

Baselines. We compare our method with four types of
baselines: 1) Local training only; 2) Vallina FL with data
heterogeneity: FedAvg [27], FedProx [20], Scaffold [16],
FedDyn [1], MOON [19] 3) Consensus-based FL: Fed-
Heal [5], FedFA [49]; 4) Personalized FL: LG-FedAvg [23],
FedBN [22], PartialFed [37].

Hyper-parameters. We tune the learning rate η ∈
{0.001, 0.01, 0.05, 0.1, 0.5} by grid search for each
method. The batch size is fixed to 50 and the local epochs
for Domainnet, Office-Caltech10, and PACS are respec-
tively 5, 1, and 5. We run each trial for 500 communication
rounds with the learning rate decay ratio 0.998 per round.
All the methods’ algorithmic hyper-parameters are respec-
tively tuned to their optimal. More details on the hyper-
parameter setting are in the supplementary materials.

5.1.1. Implementation
All our experiments are run on a 64 GB-RAM Ubuntu
22.04.3 server with Intel(R) Xeon(R) CPU E5-2630 v4 @
2.20GHz and 2 NVidia(R) RTX4090 GPUs. All code is im-
plemented in PyTorch 1.12.0 and FLGo 0.3.29 [43].

5.2. Comparison with Baselines
Overall Performance. Table 1 compares our proposed
FDSE with several baselines. Notably, FDSE consistently
achieves optimal results across all settings, demonstrating
a significant advantage in enhancing model performance in
cross-domain FL. Additionally, we observe that personal-

Figure 3. Evaluation results on individual domains (i.e., clients)
across the three datasets. Each axis represents the result for a spe-
cific domain and is scaled by the axis’s maximum value for clarity.

ized methods (e.g., LG-FedAvg, Ditto, and FedBN) outper-
form almost all non-personalized approaches (e.g., FedAvg,
FedHeal, and FedFA). This underscores the importance of
incorporating domain-specific knowledge for each domain.
Furthermore, enhancing client consensus also contributes to
performance improvement, as evidenced by FedHeal and
FedFA consistently outperforming FedAvg in nearly all set-
tings. Thus, we attribute the superiority of FDSE to the suc-
cess in integrating the complementary advantages of both
consense-based and personalization-based methods.



Figure 4. T-SNE visualization for representation space of different methods on Office-Caltech10, DomainNet, and PACS. Each color
represents one class of samples and each shape represents one domain.

Figure 5. Testing accuracy v.s. communication rounds.

Individual Performance. Figure 3 illustrates the individ-
ual performance of clients for different methods, where a
larger area under a method’s curve indicates better perfor-
mance. FDSE outperforms all other methods across nearly
all clients, confirming its effectiveness across all domains
rather than just specific ones.

Convergence. We plot the testing accuracy across com-
munication rounds in Figure 5. While Ditto demonstrates a
slightly faster convergence speed than FDSE in the early
stages of training on DomainNet and PACS, FDSE ulti-
mately achieves higher performance as training progresses.

5.3. T-SNE Visualization
Figure 4 presents the t-SNE visualization analysis of the
representation space (i.e., the feature space before the out-

put layer of the model) for different methods. On one hand,
FDSE increases the inter-class distances of samples, with a
greater separation between samples of different colors com-
pared to other baselines. On the other hand, FDSE reduces
the intra-class distance among samples of the same color,
resulting in tighter color clusters than those observed in
other baselines. This confirms FDSE’s ability to enhance
model performance while reducing domain skew.

5.4. Generalizability to Unseen Domains
We evaluate the adaptability of FDSE to unseen domains in
Table 2. Each column in Table 2 represents a target client
that did not participate in the training process, and we eval-
uate the model trained on other clients on the target after
adaptation. We emphasize that the model adaptation pro-
cesses for all methods are label-free, as we detailed in the



Method Office-Caltech10 DomainNet
C A D W AVG C I P Q R S AVG

FedAvg 51.78 70.52 80.00 65.51 66.95 62.81 30.15 55.53 48.86 59.74 58.92 52.66
FedBN 60.71 70.52 80.00 55.17 66.60 62.56 31.14 57.26 53.06 63.17 62.46 54.94
- align 40.17 68.42 86.66 72.41 66.91 60.53 31.57 54.33 50.60 59.85 62.59 53.24
FDSE 57.14 75.78 93.33 75.86 75.52 65.22 32.34 59.32 55.00 64.28 65.28 56.91

Table 2. Model performance (↑) of adapting the trained model to different unseen clients. The optimal results are marked by bold.

Figure 6. The impact of hyper-parameters on model performance.

Module DomainNet Office PACS
A B C ALL AVG ALL AVG ALL AVG
× × × 74.63 72.19 83.94 86.13 82.46 80.72
× ✓ ✓ 75.66 73.23 84.44 88.54 82.92 80.97
✓ × ✓ 76.57 74.32 85.23 89.25 83.40 81.73
✓ ✓ × 76.49 74.24 86.43 90.38 83.40 81.78
✓ ✓ ✓ 76.77 74.50 87.15 91.58 83.81 82.17

Table 3. The ablation study of the model performance of FDSE
with each submodule to be respectively removed.

supplementary materials. - align refers to directly evalu-
ating the model trained by FDSE without adaptation. Our
FDSE achieves comparable results to the baselines even be-
fore model adaptation. After adaptation, FDSE significantly
enhances model performance for most clients, confirming
FDSE’s ability to generalize effectively to unseen domains.

5.5. Impact of Hyper-parameters
Effect of λ. As shown in the first column of Figure 6,
slightly increasing λ can improves the accuracy while a too
large λ will cause performance reduction, indicating that λ
should be carefully tuned to their optimal in practice.

Effect of β and τ . From the last two columns of Figure
6, the effects of both parameters exhibit a similar trend on
each dataset as their values change. We attribute this sim-
ilarity to the varying degrees of domain skew presented in
each dataset, since small values of both τ and β strengthen
domain skew elimination. The performance is more sensi-
tive to τ than to β, where a small β is preferred while the
optimal τ values differ, suggesting that τ should be properly

Method Num×107 Comm. FLOPs×1010 Timetrain

FedBN 1.30 49.52M 4.41 4.03s
Ditto 1.30 49.52M 4.41 6.59s
FDSE 0.65 24.87M 2.24 4.27s

Table 4. Comparison of communication and communication costs.

tuned while β can be fixed at a low value.

5.6. Ablation Study
We conduct the ablation analysis of the effectiveness of
FDSE’s modules in Table 3. Module A, B, and C respec-
tively correspond to the consensus-maximization aggrega-
tion in Sec.4.3.1, similarity-aware aggregation in Sec.4.3.2,
and consistency regularization in Sec.4.2. The results show
that the raw architecture of FDSE has achieved comparable
results with FedBN. Further, the performance will be de-
graded after removing each module and the optimal result
appears in the full participation of each module, indicating
the collaborative effectiveness of these modules.

5.7. Efficiency
Table 4 compares the communication and computation
costs. Our FDSE saves more communication efficiency
per round (e.g., Comm.) and computation efficiency (e.g.,
FLOPs) than baseline due to its decomposition-based archi-
tecture. Besides, FDSE achieves competitive time costs of
local training against FedBN, where the additional training
costs of FDSE mainly come from the regularization term.

6. Conclusion
In this work, we rethink the domain shift problem in
FL from a hybrid view that integrates the advantages of
personalization-based methods and consensus-based meth-
ods. We develop a novel framework, FDSE, to differently
erase domain skew for each client while maximizing their
consensus. Specifically, we efficiently formulate the model
forward passing as an iterative deskewing process that ex-
tracts and then deskews features alternatively via layer de-
composition. Further, we fine-grained design aggregation
strategies and the regularization term to enhance the knowl-
edge decoupling, leading to improved consistency in the
representation space. We plan to extend this framework to
more applications and model architectures in the future.
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Table A5. Architecture of Vallina AlexNet

Layer Details

1 Conv2d(3, 64, 11, 4, 2), BN(64), ReLU, MaxPool2D(3,2)

2 Conv2d(64, 192, 5, 1, 2), BN(192), ReLU, MaxPool2D(3,2)

3 Conv2d(192, 384, 3, 1, 1), BN(384), ReLU

4 Conv2d(384, 256, 3, 1, 1), BN(256), ReLU

5 Conv2d(256, 256, 3, 1, 1), BN(256), ReLU, MaxPool2D(3,2)

6 AdaptiveAvgPool2D(6, 6)

7 FC(9216, 1024), BN(1024), ReLU

8 FC(1024, 1024), BN(1024), ReLU

9 FC(1024, num classes)

A7. Experimental Details

A7.1. Datasets
We use three popular datasets of multi-domain image classi-
fication tasks: Office-Caltech10 [37], DomainNet [17], and
PACS [48]. The details of the three datasets are as below

Office-Caltech10. Office-Caltech10 is constructed by se-
lecting the 10 overlapping categories (e.g., backpack, bike,
calculator, headphones, keyboard, laptop, monitor, mouse,
mug and projector) between the Office dataset [35] and
Caltech256 dataset [9]. It contains four different domains:
amazon, caltech10, dslr and webcam. These domains con-
tain respectively 958, 1123, 295, and 157 images.

DomainNet. We follow [49] to select 10 categories from
the 345 categories of objects of the original dataset. The do-
mains of this dataset include clipart, real, sketch, infograph,
painting, and quickdraw.

PACS. PACS [18] consists of four domains, namely
Photo (1,670 images), Art Painting (2,048 images), Cartoon
(2,344 images) and Sketch (3,929 images). Each domain
contains seven categories.

We follow [49] to allocate each single domain’s data to
a client in our experiments. The visualized examples of the
three datasets are respectively shown in Figure A7 (a), (b),
and (c). We resize each sample into the size of 224 × 224
before feeding them into the model. We split each client’s
local data into training/validation/testing datasets by the ra-
tios 0.8/0.1/0.1. The model is trained on training datasets
and is selected according to its optimal performance on val-
idation datasets. We finally report the metrics of the selected
optimal model on each client’s testing data.

A7.2. Model Architecture
Backbone. We follow [49] to use AlexNet across our ex-
periments. The architecture of the model is as shown in

Table A6. Architecture of FDSE’s AlexNet

Layer Details

1 DSEBlock(3, 64, 11, 4, 2, G=2, dw=3), MaxPool2D(3, 2)

2 DSEBlock(64, 192, 5, 1, 2, G=2, dw=3), MaxPool2D(3, 2)

3 DSEBlock(192, 384, 3, 1, 1, G=2, dw=3)

4 DSEBlock(384, 256, 3, 1, 1, G=2, dw=3)

5 DSEBlock(256, 256, 3, 1, 1, G=2, dw=3), MaxPool2D(3, 2)

6 AdaptiveAvgPool2D(6, 6)

7 DSEBlock(9216, 1024, 1, 1, 1, G=2, dw=1)

8 DSEBlock(1024, 1024, 1, 1, 1, G=2, dw=1)

9 FC(1024, num classes)

Table A7. Architecture of DSEBlock(S,T,kernel size, stride,
padding, G, dw)

Layer Details

1 Conv2d(S, ⌈T/G⌉, kernel size, stride, padding),BNDSE(⌈T/G⌉),ReLU

2 Conv2d(⌈T/G⌉, T-⌈T/G⌉, dw, 1, dw//2)

3 Concat(outlayer1,outlayer2)

4 BNDFE(T), ReLU

Table A5. The model used by FedFA has a similar archi-
tecture with Vallina AlexNet where the first five layers are
respectively attached with an additional FFALayer. FDSE
replaces each layer in the Vallina AlexNet with a DSEBlock
as is shown in Table A5, and the details of each DSEBlock
are listed in Table A7. Particularly, we follow [10] to pre-
serve one identity mapping in the DSE convolution (e.g.,
layer 2).

A7.3. Baselines
We consider the following baselines in this work
• Local is a non-federated method where each client inde-

pendently trains its local model;
• FedAvg [27] is the classical FL method that iteratively

averages the locally trained models to update the global
model;

• LG-FedAvg[23] is a method that jointly learns compact
local representations on each device and a global model
across all devices.

• FedProx[20] restricts the model parameters to be close to
the global ones during clients’ local training to alleviate
the negative impact of data heterogeneity.

• Scaffold[16] corrects the model updating directions dur-
ing model training to mitigate client drift’s effects.

• FedDyn[1] maintains consistent local and global objec-
tives during model training to avoid model overfitting on
local objectives.

• MOON[19] restricts the model’s representation space to
be close to the global ones during clients’ local training.

• Ditto [21] personalizes the local model by limiting its dis-
tance to the global model for each client with a proximal



Figure A7. The visualization of each client’s local data.

Algorithm 2 FedBN-Adaption
Input:The trained model M, the target domain’s testing
data Dtarget

1: for batch data (X, y) ∈ Dtarget do
2: the target client collects local statistics by computing

M(X)
3: end for
4: return M

term.
• PartialFed[37] personalizes partial model parameters to

suit the global model to local distributions.
• FedBN[22] lets BN layers be locally kept by each client

without aggregation to adapt the global model to their lo-
cal datasets.

• FedFA[49] augments features in the intermediate layers
of the model to enhance clients’ consensus from the fea-
ture level.

• FedHeal[5] mitigates gradient conflicts of important
model parameters to enhance clients’ consensus from the
model parameter level.

A7.4. Hyper-parameters
Common parameters. We respectively tune the learning
rate η ∈ {0.001, 0.01, 0.05, 0.1, 0.5} by grid search for
each method. We clip the gradient’s norm to be no larger
than 10. We run each trial for 500 communication rounds.
The batch size is fixed to 50 and the local epochs for Do-
mainnet, Office-Caltech10, and PACS are respectively 5,
1, and 5. We decay the learning rate by the ratio 0.998
per round. We select all the clients at each communication
round like other works in cross-silo FL [25].

Algorithmic parameters. For Ditto [21] and Fed-
Prox [20], we tune the regularization coefficient µ ∈
[0.0001, 0.001, 0.01, 0.1, 1.0]. For MOON [19], we fol-

Algorithm 3 FDSE-Adaption
Input:The trained model M, the target domain’s testing
data Dtarget, the number of epochs E, the learning rate
η

1: the target client freezes the gradient of trainable param-
eters θu inM if θu does not belong to any DSE mod-
ules and fixes all the statistical parameters of BNDFE.

2: for epoch i = 1, ..., E do
3: for batch data (X, y) ∈ Dtarget do
4: the target client computes model forwardM(X)
5: the target client hook DSE module’s outputs

{X(l)
k }

6: the target client compute regularization term in
Sec. 4.2

7: the target client optimizes the non-frozen parame-
ters to minimize the regularization term via gradi-
ent descent with step size η.

8: end for
9: end for

10: return M

low its setting to set the range of the coefficient µ as
[0.1, 1.0, 5.0, 10.0] and fix the value of τ = 0.5. For Fed-
Dyn [1], we tune the regularization coefficient alpha ∈
[0.001, 0.01, 0.03, 0.1]. For FedHeal, we tune the τ ∈
[0.1, 0.2, 0.3, 0.4, 0.5]. For FDSE, we fix β = 0.001 and
only tune λ ∈ [0.01, 0.1, 1.0], τ ∈ [0.001, 0.01, 0.1, 0.5].

A7.5. Adapation Details

We illustrate the details of model adaptation for each
method in Sec. 5.4. For FedAvg, we directly use the
global model to make predictions on the target domain. For
FedBN, we first collect local statistics for 1 epoch on the tar-
get domain’s testing dataset and then evaluate the adapted
model, as is shown in Algo. 2. For FDSE, we fine-tune



Figure A8. Testing loss curves on other model architectures.

Table A8. Model performance (↑) on other model architectures.

Method DomainNet-ResNet50 PACS-ViT-B/8
ALL AVG ALL AVG

FedAvg 59.90±0.96 58.71±1.06 26.44±4.16 25.94±4.46

FedHeal 66.16±0.62 64.52±0.55 30.05±3.44 29.51±2.98

FedBN 69.36±0.29 66.99±0.53 36.67±2.01 36.22±2.86

Ditto 67.70±0.36 64.99±0.49 31.96±4.32 31.75±4.13

FDSE 72.98±0.39 70.44±0.32 38.24±1.69 38.41±1.90

Table A9. Model performance (↑) on unseen clients.

Dataset FedAvg FedBN FedDG-GA FedSR FDSE

O
ffi

ce

C 51.78 60.71 55.35 56.25 57.14
A 70.52 70.52 72.63 75.78 75.78
D 80.00 80.00 86.66 86.66 93.33
W 65.61 55.17 68.96 69.32 75.86
avg 66.95 66.60 70.90 72.00 75.52

D
om

ai
nN

et

C 62.81 62.56 62.43 60.75 65.22
I 30.15 31.14 30.70 31.81 32.34
P 55.53 57.26 57.04 56.18 59.32
O 48.86 53.06 48.26 52.13 55.00
R 59.74 63.17 59.85 64.15 64.28
S 58.92 62.46 58.92 58.55 65.28

avg 52.66 54.94 52.87 53.92 56.91

the DSE modules and fix other parameters to minimize the
consistency regularization (e.g., Sec. 4.2) for several epochs
before evaluation as shown in Algo. 3.

A8. Additional Experiments
A8.1. Other Model Architecture
We have studied the effectiveness on relatively large mod-
els in Table A8. We replace the last operator of each layer
(i.e., ResNet50’s block and Vit-B/8’s feedforward layer)
with DSE module. FDSE consistently outperforms base-
lines (e.g., Table A8) and exhibits faster convergence speed
(e.g., Figure A8).

A8.2. Additional Baselines of generalizabilityy
We compare FDSE with the additional baselines [30, 46] for
unseen clients in Table A9. FDSE outperforms all baselines,
which we attribute to the additional adaptation steps.
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