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Spatio-Temporal Joint Graph Convolutional
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Abstract—Recent studies have shifted their focus towards for-
mulating traffic forecasting as a spatio-temporal graph modeling
problem. Typically, they constructed a static spatial graph at
each time step and then connected each node with itself between
adjacent time steps to create a spatio-temporal graph. However,
this approach failed to explicitly reflect the correlations between
different nodes at different time steps, thus limiting the learning
capability of graph neural networks. Additionally, those models
overlooked the dynamic spatio-temporal correlations among
nodes by using the same adjacency matrix across different time
steps. To address these limitations, we propose a novel approach
called Spatio-Temporal Joint Graph Convolutional Networks
(STJGCN) for accurate traffic forecasting on road networks over
multiple future time steps. Specifically, our method encompasses
the construction of both pre-defined and adaptive spatio-temporal
joint graphs (STJGs) between any two time steps, which represent
comprehensive and dynamic spatio-temporal correlations. We
further introduce dilated causal spatio-temporal joint graph
convolution layers on the STJG to capture spatio-temporal
dependencies from distinct perspectives with multiple ranges.
To aggregate information from different ranges, we propose
a multi-range attention mechanism. Finally, we evaluate our
approach on five public traffic datasets and experimental results
demonstrate that STJGCN is not only computationally efficient
but also outperforms 11 state-of-the-art baseline methods.

Index Terms—Spatio-temporal, graph convolutional network,
traffic forecasting.
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I. INTRODUCTION

S PATIO-TEMPORAL data forecasting has received increas-
ing attention from the deep learning community in recent

years [1], [2], [3]. It plays a vital role in a wide range of
applications, such as traffic speed prediction [4] and air quality
inference [5]. In this paper, we study the problem of forecasting
the future traffic conditions given historical observations on a
road network.

Recent studies formulate traffic forecasting as a spatio-
temporal graph modeling problem [4], [6], [7], [8], [9], [10],
[11]. The basic assumption is that the state of each node is
conditioned on its neighboring node information. Based on
this, they construct a spatial graph with a pre-defined [4] or
data-adaptive [7] adjacency matrix. In such a graph, each node
corresponds to a location of interest (e.g., traffic sensor). The
graph neural network [12] is applied on that graph to model the
correlations among spatial neighboring nodes at each time step.
To leverage the information from temporal neighboring nodes,
they further connect each node with itself between adjacent time
steps, which results in a spatio-temporal graph, as shown in
Fig. 1(a). The 1D convolutional neural network [6] or recurrent
neural network [4] is commonly used to model the correlations
at each node between different time steps. By combining the
spatial and temporal features, they are able to update the state
of each node.

However, those spatio-temporal graphs do not explicitly re-
flect the correlations between different nodes at different time
steps (e.g., the red dash lines in Fig. 1(b)). In such a graph,
the information of spatial and temporal neighborhoods is cap-
tured through the spatial and temporal connections respectively,
while the information of neighboring nodes across both spatial
and temporal dimensions are not considered, which may restrict
the learning ability of graph neural networks. For example, a
traffic jam occurred at an intersection may affect not only current
nearby roads (spatial neighborhoods) and its local future traffic
condition (temporal neighborhoods), but also the downstream
roads in next few hours (spatio-temporal neighborhoods). Thus,
we argue that it is necessary to model the comprehensive corre-
lations in the spatio-temporal data.

Another limitation of previous works is that they ignore the
dynamic correlations among nodes at different time steps, as
shown in Fig. 1(c). The road network distances among sensors
(nodes) are commonly used to define the spatial graph [4], [6].
This pre-defined graph is usually static. Some researchers [7],
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Fig. 1. The comprehensive and dynamic connections among nodes in graph-structured spatio-temporal data. There are three common scenarios: (a) Spatio-
Temporal Graph: The node 2 at time step t can be influenced by nodes 1 and 3 at time step t through spatial connections, and node 2 at time step t− 1 through
the temporal connection. (b) Pre-defined Spatio-Temporal Joint Graph: The node 2 at time step t may also be affected by nodes 1 and 3 at time step t− 1 through
spatio-temporal connections. (c) Adaptive Spatio-Temporal Joint Graph: Compared with time step t− 1, the connections among nodes 1, 2 and 3 exhibit strong
dynamic characteristics at the time step t. For instance, the connection between nodes 1 and 3 gets weakened, while the connection between nodes 2 and 3 becomes
stronger. Both (b) and (c) scenarios have not been comprehensively explored in existing studies.

[10] propose to learn a data-adaptive adjacency matrix, which
is also unchanged over time steps. However, the traffic data
exhibits strong dynamic correlations in the spatial and temporal
dimensions, those static graphs are unable to reflect the dynamic
characteristics of correlations among nodes. For example, the
residence region is highly correlated to the office area during
workday morning rush hours, while the correlation would be
relatively weakened in the evening because some people might
prefer to dining out before going home. Thus, it is crucial
to model the dynamic spatio-temporal correlations for traffic
forecasting.

This paper addresses these limitations from the following
perspectives. First, besides the spatial and temporal connec-
tions, we further add the spatio-temporal connections between
two time steps according to the spatio-temporal distances to
define the spatio-temporal joint graph (STJG). In this way,
the pre-defined STJG preserves comprehensive spatio-temporal
correlations between any two time steps. Second, in order to
adapt to the dynamic correlations among nodes, we suggest
to explore an adaptive STJG, which is time-variant by en-
coding the time features. The adjacency matrix in this adap-
tive STJG is dynamic, changing over time steps. By con-
structing both the pre-defined and adaptive STJGs, we are
able to preserve comprehensive and dynamic spatio-temporal
correlations.

On these basis, we then develop the spatio-temporal joint
graph convolution (STJGC) operations on both pre-defined and
adaptive STJGs to simultaneously capture the spatio-temporal
dependencies in a unified operation. We further design the
dilated causal STJGC layers to extract multiple spatio-temporal
ranges of information. Next, a multi-range attention mechanism
is proposed to aggregate the information of different ranges.
Finally, we apply independent fully-connected layers to produce
the multi-step ahead prediction results. The whole framework is
named as spatio-temporal joint graph convolutional networks
(STJGCN), which can be learned end-to-end. To evaluate the
efficiency and effectiveness of STJGCN, we conduct extensive
experiments on five public traffic datasets. The experimental re-
sults demonstrate that our STJGCN is computationally efficient

and achieves the best performance against 11 state-of-the-art
baseline methods. Our main contributions are summarized as
follows.
� We construct both pre-defined and adaptive spatio-

temporal joint graphs (STJGs), which reflect comprehen-
sive and dynamic spatio-temporal correlations.

� We design dilated causal spatio-temporal joint graph con-
volution layers on both types of STJG to model multiple
ranges of spatio-temporal correlations.

� We propose a multi-range attention mechanism to aggre-
gate the information of different ranges.

� We evaluate our model on five public traffic datasets, and
experimental results demonstrate that STJGCN has high
computation efficiency and outperforms 11 state-of-the-art
baseline methods.

The rest of this paper is organized as follows. Section II
reviews the related work. Section III presents the prelimi-
nary of this work. Section IV details the method of STJGCN.
Section V compares STJGCN with state-of-the-art methods on
five datasets. Finally, Section VI concludes this paper and draws
future work.

II. RELATED WORK

A. Graph Convolutional Networks

Graph convolutional networks (GCNs) are successfully ap-
plied on various tasks (e.g., node classification [13], link pre-
diction [14]) due to their superior abilities of handling graph-
structured data [12]. There are mainly two types of GCN [15]:
spatial GCN and spectral GCN. The spatial GCN performs
convolution filters on neighborhoods of each node. Researchers
in [16] propose a heuristic linear method for neighborhood
selecting. GraphSAGE [17] samples a fixed number of neighbors
for each node and aggregates their features. GAT [18] learns the
weights among nodes via attention mechanisms. Researchers
in [19] improve graph neural network architecture by exploiting
correlation structure in the regression residuals. The spectral
GCN defines the convolution in the spectral domain [20], which
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is first introduced in [21]. ChebNet [22] reduces the computa-
tional complexity with fast localized convolution filters. In [13],
researchers further simplify the ChebNet to a simpler form and
achieve state-of-the-art performances on various tasks. Recently,
a range of studies apply the GCN on time-series data and
construct spatio-temporal graphs for traffic forecasting [4], [23],
human action recognition [24], [25], etc.

B. Spatio-Temporal Forecasting

Spatio-temporal forecasting is an important research topic,
which has been extensively studied for decades [26], [27],
[28], [29], [30]. Recurrent neural networks (RNNs), especially
the long short-term memory (LSTM) and gated recurrent unit
(GRU) are successfully applied for modeling temporal correla-
tions [31]. To capture the spatial dependencies, convolutional
neural networks (CNNs) are introduced, which are restricted
to process regular grid structures [32], [33], [34], [35], [36].
Recently, researchers apply graph neural networks to model the
non-euclidean spatial correlations [37]. DCRNN [4] employs
diffusion convolution to capture the spatial dependency and
applies GRU to model the temporal dependency. STGCN [6]
uses graph convolution and 1D convolution to model the spatial
and temporal dependencies, respectively. Researchers in [38]
study the effect of the order of spatial layers and temporal
layers on STGCN model performance. Several works [8], [39],
[40] introduce the attention mechanisms [41] into the spatio-
temporal graph modeling to improve the prediction accuracy.
AGSTN [42] proposes an attention adjustment mechanism to
realize fluctuation modulation for learning time-evolving spatio-
temporal correlation. Some studies consider more kinds of
connections (e.g., semantic connection [43], edge interaction
patterns [44]) to construct the spatial graph. The adjacency
matrices in these models are usually pre-defined according to
some prior knowledge (e.g., distances among nodes). Some
researchers [7], [10] argue that the pre-defined adjacency matrix
does not necessarily reflect the underlying dependencies among
nodes, and propose to learn an adaptive adjacency matrix for
graph modeling. However, both the pre-defined and adaptive
adjacency matrices assume static correlations among nodes,
which cannot adapt to the evolving systems (e.g., traffic net-
works). Moreover, these graph-based methods do not explicitly
model the correlations between different nodes at different time
steps, which may restrict the learning ability of graph neural
networks.

III. PRELIMINARY

Problem Definition. Suppose there are N sensors (nodes) on
a road network, and each sensor recordsC traffic measurements
(e.g., volume, speed) at each time step. Thus, the traffic con-
ditions at time step t can be represented as Xt ∈ R

N×C . The
traffic forecasting problem aims to learn a function f that maps
the traffic conditions of historical P time steps to next Q time
steps:

[Xt−P+1, Xt−P+2, . . . , Xt]
f−→ [Xt+1, Xt+2, . . . , Xt+Q].

(1)

IV. METHODOLOGY

A. Framework Overview

Fig. 2 depicts the framework of our proposed Spatio-Temporal
Joint Graph Convolutional Networks (STJGCN), which includes
three modules. First, previous graph-based methods generally
ignore the spatio-temporal connections and the dynamic cor-
relations among nodes, we thus propose the spatio-temporal
joint graph (STJG) construction module to construct both pre-
defined and adaptive STJGs, which preserve comprehensive and
dynamic spatio-temporal correlations. Second, as the standard
graph convolution operation models spatial correlations only, we
propose the spatio-temporal joint graph convolution (STJGC)
operation on both types of STJG to model the comprehensive
and dynamic spatio-temporal correlations in a unified operation.
Based on the STJGC, we further propose the dilated casual
STJGC module to capture spatio-temporal dependencies within
multiple neighborhood and time ranges. Finally, in the predic-
tion module, we propose a multi-range attention mechanism
to aggregate the information of different ranges, and apply
fully-connected layers to produce the prediction results. We
detail each module in the following subsections.

B. STJG Construction Module

In this module, we first pre-define the spatio-temporal joint
graph (STJG) according to the spatio-temporal distances among
nodes. While, the pre-defined graph may not reflect the under-
lying correlations among nodes [7], [10], we further propose to
learn adaptive STJG. By constructing both types of STJG, we are
able to represent comprehensive and dynamic spatio-temporal
correlations among nodes.

1) Pre-Defined Spatio-Temporal Joint Graph: Previous
studies [4], [6] for traffic forecasting on graphs usually define
the spatial adjacency matrix based on pair-wise road network
distances:

Ai,j = exp

(
−dist(vi, vj)

2

σ2

)
, (2)

where dist(vi, vj) represents the road network distance from
node vi to node vj , σ is the standard deviation of distances, and
Ai,j denotes the edge weight between node vi and node vj . They
construct the spatial graph at each time step, and then connect
each node with itself between adjacent time steps to define the
spatio-temporal graph. In such a graph, the connections between
different nodes at different time steps are not incorporated, which
may restrict its representation ability.

We propose to construct a spatio-temporal joint graph
(STJG), which preserves comprehensive spatio-temporal cor-
relations. The intuitive idea is to further connect different nodes
between two time steps, as shown in Fig. 1(b). Thus, we modify
(2) to be the STJG adjacency matrix, as:

Ai,t−k;j,t = exp

(
− ((k + 1) · dist(vi, vj))2

σ2

)
, (3)

where k is the time difference between two time steps.Ai,t−k;j,t

defines the edge weight between node vi at time step t− k and
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Fig. 2. The framework of Spatio-Temporal Joint Graph Convolutional Networks (STJGCN). It consists of three modules: (i) the STJG construction module
(detailed in Section IV-B) constructs both pre-defined and adaptive spatio-temporal joint graphs (STJGs); (ii) the dilated causal STJGC module (detailed in
Section IV-C) stacks dilated causal spatio-temporal joint graph convolution (STJGC) layers to capture multiple ranges of spatio-temporal dependencies, where
each STJGC layer performs convolution operation based on both types of STJG; (iii) the prediction module (detailed in Section IV-D) aggregates the information
of different ranges via a multi-range attention mechanism and produces the prediction results using fully-connected layers.

node vj at time step t, which decreases with the increase of
spatio-temporal distance. When k = 0, (3) degenerates to (2),
which represents the spatial connections. If i = j, the STJG
adjacency matrix defines the temporal connections at each node
between two time steps. Otherwise, it represents the spatio-
temporal connections between different nodes at different time
steps. Thus, we are able to define a comprehensive spatio-
temporal graph according to (3). Note that the STJG could be
constructed between any two time steps, which makes it flexible
to reveal multiple time-ranges of spatio-temporal correlations.

We filter the values smaller than a threshold δpdf in the STJG
adjacency matrix to eliminate weak connections and control the
sparsity. As this adjacency matrix is conditioned on the time
difference k, but irrelevant to a specific time step, we denote it
as A(k) ∈ R

N×N in following discussions.
2) Adaptive Spatio-Temporal Joint Graph: Previous stud-

ies [7], [10] demonstrate that the pre-defined adjacency matrix
may not reflect the underlying correlations among nodes, and
propose adaptive ones. However, they only define the spatial
graph, and it is unchanged over time steps. We propose to
learn adaptive STJG adjacency matrices that could represent
comprehensive and dynamic spatio-temporal correlations based
on the latent space modeling algorithm [45].

a) Latent space modeling: Given a graph, we assume each
node resides in a latent space with various attributes. The at-
tributes of nodes and how these attributes interact with each
other jointly determine the underlying relations among nodes.
The nodes which are close to each other in the latent space are
more likely to form a link. Mathematically, we aim to learn
two matrices U and B. Here, U ∈ R

N×d denotes the d latent
attributes of theN nodes, andB ∈ R

d×d represents the attributes
interaction patterns, which could be an asymmetric matrix for
directed graph or symmetric matrix for undirected graph. The
product ofUBU� could represent the connections among nodes.

b) Spatio-temporal embedding: We propose a spatio-
temporal embedding to form the latent node attributes. We first
randomly initialize a spatial embedding for each of theN nodes,

and then transform it to d dimensions via fully-connected layers.
To obtain time-varying node attributes and take periodic patterns
in historical input data (i.e., morning rush hour) into account, we
further encode the time information as the temporal embedding.
At each time step, we consider two time features, i.e., time-of-
day and day-of-week, which are encoded by one-hot coding and
then be projected to d dimensions using fully-connected layers.
We then add the spatial and temporal embeddings together to
generate the spatio-temporal embedding at each time step t,
represented as Ut ∈ R

N×d, which can be updated during the
training stage. The spatio-temporal embedding encodes both the
node-specific and time-varying information, and it could mine
periodic spatio-temporal patterns of historical data.

c) Adaptive STJG adjacency matrix: Based on the spatio-
temporal embedding, we define the STJG adjacency matrix at
time step t according to the latent space modeling algorithm, as:

L̃t = softmax(ψ(UtBU
�
t )), (4)

with

ψ(x) =

{
x, if x ≥ δadt
0, otherwise

, (5)

whereUt ∈ R
N×d is the spatio-temporal embedding ofN nodes

at time step t, ψ(x) is used to eliminate the weights smaller than
a threshold δadt, and the softmax function is applied for nor-
malization. L̃t ∈ R

N×N defines the spatial connections among
N nodes at time step t, which is dynamic, changing over time
steps. In order to construct the connections between different
time steps, we modify (4) as:

L̃t−k;t = softmax(ψ(Ut−kBU
�
t )), (6)

where L̃t−k;t ∈ R
N×N is the normalized STJG adjacency matrix

between time steps t− k and t. When k = 0, (6) degenerates to
(4), which describes the spatial graph at time step t. Thus, (6) is
able to define the spatio-temporal joint graph between time steps
t− k and t with comprehensive and dynamic spatio-temporal
connections.
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C. Dilated Causal STJGC Module

The standard graph convolution performs on spatial graphs
to model spatial correlations only, we thus propose the spatio-
temporal joint graph convolution (STJGC) on both types of
STJG to model spatio-temporal correlations in a unified opera-
tion. We further design dilated causal STJGC layers to capture
multiple ranges of spatio-temporal dependencies, as shown in
Fig. 2. In the following discussion, we first describe the STJGC
operation in Section IV-C1, and then introduce the dilated causal
STJGC layers in Section IV-C2.

1) Spatio-Temporal Joint Graph Convolution (STJGC):
Graph convolution is an effective operation for learning node
information from spatial neighborhoods according to the graph
structure, while the standard graph convolution performs on the
spatial graph to model the spatial correlations only. In order to
model the comprehensive and dynamic spatio-temporal correla-
tions on the STJG, we propose the spatio-temporal joint graph
convolution (STJGC) operations on both types of STJG.

a) Graph convolution: The graph convolution is defined
as [13]:

Z = φ(ÃXW + b). (7)

Here, X ∈ R
N×d1 and Z ∈ R

N×d2 denote the input and output
graph signals, W ∈ R

d1×d2 and b ∈ R
d2 are learnable param-

eters, φ(·) is an activation function (e.g., ReLU [46]), Ã =
D−1/2AD−1/2 ∈ R

N×N is the normalized adjacency matrix,
where A is the adjacency matrix with self-loops, and D =∑

j Ai,j is the degree matrix.
b) STJGC on pre-defined STJG: Consider the STJG be-

tween time steps t− k and t, the information of each node at
time step t comes from its spatial, temporal, and spatio-temporal
neighborhoods:

Zpdf
t = φ(Ã(k)Xt−kW

pdf
1 + Ã(0)XtW

pdf
2 + bpdf ), (8)

where Ã(k) is the normalized pre-defined STJG adjacency
matrix between time steps t− k and t (see (3)). In (8),
Ã(k)Xt−kW

pdf
1 means we aggregate neighborhoods (both tem-

poral and spatio-temporal) information from time step t− k,
and Ã(0)XtW

pdf
2 means we aggregate the information from

spatial neighborhoods at time step t. Thus, by performing (8), we
are able to model comprehensive spatio-temporal correlations
between two time steps.

Furthermore, at time step t, we propose to incorporateK (de-
noted as kernel size) time step information (e.g., t, t− 1, . . . , t−
K + 1) to update the node features. Specifically, we modify (8)
as:

Zpdf
t =

K−1∑
k=0

φ(Ã(k)Xt−kW
pdf
k + bpdf ). (9)

In the case of a directed graph, we consider two directions
of information propagation (i.e., forward and backward), cor-
responding to two normalized adjacency matrices: Ã(k)

fw =

D
(k)
O

−1/2
A(k)D

(k)
O

−1/2
and Ã

(k)
bw = D

(k)
I

−1/2
A(k)�D(k)

I

−1/2
,

whereD(k)
O =

∑
j A

(k)
i,j andD(k)

I =
∑

iA
(k)
i,j represent the out-

degree and in-degree matrices, respectively. Thus, we transform

(9) to:

Zpdf
t =

K−1∑
k=0

φ
(
Ã

(k)
fwXt−kW

pdf
k,1 + Ã

(k)
bwXt−kW

pdf
k,2 + bpdf

)
,

(10)
where Xt−k ∈ R

N×d and Xt ∈ R
N×d are the input graph sig-

nals at time steps t− k and t respectively, Zpdf
t denotes the

updated feature at time step t, W pdf
k,1 ∈ R

d×d, W pdf
k,2 ∈ R

d×d,
and bpdf ∈ R

d are learnable parameters.
By this design, our STJGC simultaneously models the infor-

mation propagation from three kinds of connections (i.e., spatial,
temporal, and spatio-temporal) in a unified operation.

c) STJGC on adaptive STJG: As the pre-defined STJG
may not reflect the underlying correlations among nodes, we
further propose STJGC on adaptive STJG. The computation is
similar as that on pre-defined STJG:

Zadt
t =

K−1∑
k=0

φ
(
L̃t−k;tXt−kW

adt
k + badt

)
, (11)

where L̃t−k;t is the normalized adaptive STJG adjacency matrix
between time steps t− k and t (defined in (6)). Inspired by
the bi-directional RNN [47], we consider both time directions
of the information flow. Specifically, we compute two adaptive
STJG adjacency matrices: L̃t−k;t and L̃t;t−k, and modify (11)
accordingly, as:

Zadt
t =

K−1∑
k=0

φ(L̃t−k;tXt−kW
adt
k,1 + L̃t;t−kXt−kW

adt
k,2 + badt),

(12)
where Zadt

t is the updated feature at time step t, which encodes
the comprehensive and dynamic spatio-temporal correlations,
W adt

k,1 ∈ R
d×d, W adt

k,2 ∈ R
d×d, and bpdf ∈ R

d are learnable pa-
rameters.

d) Gating fusion: The pre-defined and adaptive STJGs
represent the spatio-temporal correlations from distinct perspec-
tives. To enhance the representation ability, we use a gating
mechanism to fuse the features extracted on two types of STJG.
Specifically, we define a gate to control the importance of two
features as:

G = sigmoid(W g[Zpdf
t , Zadt

t ] + bg), (13)

where [·, ·] denotes the concatenation operation, the sigmoid
function is used to control the output lies in range [0, 1],
W g ∈ R

2d×d and bg ∈ R
d are learnable parameters. The gate

G ∈ R
N×d controls the information flow between pre-defined

and adaptive STJGs in both node-wise and channel-wise. Based
on the gate, we fuse two features as:

Zt = G� Zpdf
t + (1−G)� Zadt

t , (14)

where � denotes the element-wise product. As a result, Zt ∈
R

N×d represents the updated representation of N nodes at time
step t, which aggregates the information from their spatial,
temporal, and spatio-temporal neighborhoods on both types of
STJG.
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Fig. 3. The illustration of the dilated causal STJGC module (middle part in the figure) and the prediction module (right part in the figure) in STJGCN. In the
dilated csusal STJGC module, the inputs are first transformed by fully-connected layers and then be passed to the dilated causal STJGC layers, which pick inputs
every γ (dilation factor, γ = {1, 2, 4, 4} for each STJGC layer in the figure) step and apply STJGC (left part in the figure) to the selected inputs. The prediction
module first aggregates the outputs of each STJGC layer via the multi-range attention mechanism and then uses fully-connected layers to produce the prediction
results.

2) Dilated Causal STJGC Layers: The STJGC operation is
able to model the correlations in different time ranges by con-
trolling the time difference k. In addition, different STJGC lay-
ers aggregate information within diverse neighborhood ranges.
This makes it flexible to model the spatio-temporal correlations
in multiple neighborhood and time ranges. The information
in different ranges reveals distinct traffic properties. A small
range uncovers the local dependency and a large range indicates
the global dependency. Inspired by the dilated causal convo-
lution [48], [49], which is able to capture diverse time-ranges
of dependencies in different layers, we propose dilated causal
STJGC layers to capture multiple ranges of spatio-temporal
dependencies.

a) Dilated causal convolution: The dilated causal con-
volution operation slides over the input sequence by skipping
elements with a certain time step (i.e., dilation factor γ), and it
involves only historical information at each time step to satisfy
the causal constraint. In this way, it models diverse time-ranges
of dependencies in different layers.

b) Dilated causal STJGC: As illustrated in Fig. 3, we
first transform the inputs into d dimension space using fully-
connected layers. Then we stack a couple of STJGC layers
upon it in the dilated causal way. Different to the standard
dilated causal convolution using 1D CNN, we use the STJGC
in each layer to model the dynamic and comprehensive spatio-
temporal correlations. Suppose the length of input graph signals
is P = 12, we could stack four STJGC layers with kernel
size K = 2 and dilation factor γ = {2, 4, 4, 4} in each layer,
respectively. The residual connections [50] are also applied in
each STJGC layer at the corresponding output time steps. The
number of STJGC layers, dilation factors and kernel size could
be re-designed according to the length of input graph signals, in
order to ensure that the output of the last STJGC layer covers
the information from all input time steps.

In these dilated causal STJGC layers, each STJGC layer
captures different ranges of spatio-temporal dependencies. For

example, as shown in Fig. 3, in the first STJGC layer, the
hidden state at time step t aggregates information from 1-hop
neighborhoods at time steps t− 1 and t. With the layer goes
deeper, it could extract features from higher order neighborhoods
at longer time-ranges. In particular, in the last STJGC layer,
each node at time step t captures the information within 4-hop
neighborhoods from total P time steps.

D. Prediction Module

In this module, we first propose a multi-range attention
mechanism to aggregate the information of different ranges
extracted by the dilated causal STJGC layers, and then apply
independent fully-connected layers to produce the multi-step
ahead prediction results.

1) Multi-Range Attention: As introduced in Section IV-C2,
each STJGC layer captures different spatio-temporal ranges of
dependencies. A small range uncovers the local dependency
and a large range indicates the global dependency, e.g., the
correlations between distant nodes at distant time steps. Thus, It
is essential to combine the multi-range information. In addition,
the importance of different ranges could be diverse. We propose
a multi-range attention mechanism to aggregate the information
of different ranges. Mathematically, we denote the hidden state
of node vi at time step t inm-th STJGC layer as z(m)

i ∈ R
d, the

attention score is computed as:

smi = v�tanh(W az
(m)
i + ba), (15)

αm
i =

exp(smi )∑M
m=1 exp(s

m
i )
, (16)

whereW a ∈ R
d×d, ba ∈ R

d, and v ∈ R
d are learnable parame-

ters, M is the number of STJGC layers, and αm
i is the attention

score, indicating the importance of z(m)
i . Based on the attention
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scores, the multi-range information can be aggregated as:

yi =
M∑

m=1

αm
i z

(m)
i , (17)

where yi is the updated feature of node vi, which aggregates the
information from multiple spatio-temporal ranges. The attention
mechanism is conducted on all of the N nodes in parallel with
shared learnable parameters, and produces an output as Y ∈
R

N×d.
2) Independent Fully-Connected Layers: As the traffic of

different time steps may exhibit different properties, it would
be better to use different networks to generate the predictions
at different forecasting horizons. We thus apply Q independent
two-fully-connected layers upon Y to produce the Q time steps
ahead prediction results:

X̂t+i = φ(YW i
1 + bi1)W

i
2 + bi2, (18)

where X̂t+i denotes the prediction result of time step t+ i (i =
1, 2, . . . , Q),W i

1 ∈ R
d×d, bi1 ∈ R

d,W i
2 ∈ R

d×1, and bi2 ∈ R are
the corresponding learnable parameters, φ(·) is an activation
function.

3) Loss Function: The mean absolute error (MAE) loss is
commonly used in the traffic forecasting problem [4], [7], [39].
In practice, the MAE loss optimizes all prediction values equally
regardless of the value size, which leads to relatively non-ideal
predictions for small values compared to the predictions of large
values. The mean absolute percentage error (MAPE) loss is more
relevant to the predictions of small values. Thus, we propose to
combine the MAE loss and MAPE loss as our loss function:

L(X̂t+i; Θ) =
1

Q

(
Q∑
i=1

(
|X̂t+i −Xt+i|

+β · |X̂t+i −Xt+i|
Xt+i

· 100
))

, (19)

where β is used to balance MAE loss and MAPE loss,Θ denotes
all learnable parameters in STJGCN.

E. Complexity Analysis

We further analyze the time complexity of the main compo-
nents in each module in our STJGCN.

In the STJG construction module, the computation mainly
comes from the learning of adaptive STJG adjacency matrix
(6). The time complexity is O(Nd2 +N2 d), where N denotes
the number of nodes, d is the dimension of the spatio-temporal
embedding. Regarding d as a constant, the time complexity turns
toO(N2), which is attributed to the pairwise computation of the
N nodes’ embeddings. One concern is that the large-scaled node
would result in a more expensive cost. To mitigate the scale
problem, we suggest to only calculate the connected edges in
adaptive STJG adjacency matrix according to a priori knowledge
(i.e., pre-defined STJG).

In the dilated casual STJGC module, the time complexity
mainly depends on the computation of each STJGC operation
((10) and (12)), which incurs O(K(|E|d+Nd2)) time com-
plexity. Here, K is the kernel size, |E| denotes the number of

TABLE I
SUMMARY STATISTICS OF FIVE DATASETS

edges in the graph, and d is the dimension of hidden states. The
time complexity of STJGC mainly depends on |E|, as each node
aggregates information from its neighborhoods, whose number
is equal to the edge number.

In the prediction module, the time complexities of multi-
range attention mechanism ((15), (16), and (17)) and inde-
pendent fully-connected layers (18) are O(N(Md+ d2)) and
O(QNd2), respectively. Thus, the total time complexity of
the prediction module is O(N(Md+Qd2)), where M is the
number of STJGC layers and Q is the number of time steps
to be predicted. The time complexity is highly related to Q, as
we use Q independent fully-connected layers to produce the
multi-step prediction results.

V. EXPERIMENTS

A. Datasets

We evaluate our STJGCN on five highway traffic datasets:
PeMSD3, PeMSD4, PeMSD7, PeMSD8 and Seattle-Loop. The
previous four datasets are released in [8], [9]. These datasets
are collected by the Caltrans Performance Measurement System
(PeMS) from 4 districts in real time every 30 seconds. The raw
traffic data is aggregated into 5-minute time interval. There are
three kinds of traffic measurements in PeMSD4 and PeMSD8
datasets, including total flow, average speed, and average occu-
pancy. In PeMSD3 and PeMSD7 datasets, only the traffic flow
is recorded. Seattle-Loop is released in [51], [52], which is a
highway speed dataset collected from 323 loop detectors in the
Greater Seattle Area. The dataset contains 5-minute resolution
traffic speed data for the entirety of 2015. Following previous
studies [10], [11], [53], we predict the traffic flow in first four
datasets, and traffic speed in last dataset. The summary statistics
of five datasets are presented in Table I.

All datasets are normalized using the Z-Score method, and
be split in chronological order with 60% for training, 20% for
validation, and 20% for testing. The pair-wise road network
distances are provided in the datasets, and we use them to
construct the pre-defined STJG according to (3).

B. Experimental Setup

1) Evaluation Metrics: We adopt three widely used metrics
for evaluation, i.e., mean absolute error (MAE), root mean
squared error (RMSE), and mean absolute percentage error
(MAPE), which are defined as:

MAE =
1

NQ

N∑
i=1

Q∑
j=1

|X̂i,t+j −Xi,t+j |, (20)
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TABLE II
HYPERPARAMETER SETTINGS OF STJGCN ON FIVE DATASETS

RMSE =

√√√√ 1

NQ

N∑
i=1

Q∑
j=1

(X̂i,t+j −Xi,t+j)2, (21)

MAPE =
1

NQ

N∑
i=1

Q∑
j=1

|X̂i,t+j −Xi,t+j |
Xi,t+j

, (22)

where X̂i,t+j andXi,t+j denote the prediction result and ground
truth of node vi at time step t+ j, respectively,N is the number
of nodes, and Q is the number of time steps to be predicted.

2) Experimental Settings: The PeMSD3 and PeMSD7
datasets contain one traffic measurement (i.e., traffic flow).
Thus, the dimensions of the input and output are C = 1 and
1, respectively. The PeMSD4 and PeMSD8 datasets contain
three traffic measurements (i.e., traffic flow, average speed, and
average occupancy), and only the traffic flow is predicted in
the experiments [10], [11]. Thus, the dimensions of the input
and output are C = 3 and 1, respectively. The Seattle-Loop
dataset contains one traffic measurement (i.e., traffic speed).
Thus, the dimensions of the input and output are C = 1 and
1. Following previous studies [10], [11], [53], we use the traffic
data of historical 12 time steps (P = 12) to forecast the next 12
time steps (Q = 12).

The core hyperparameters in STJGCN include the thresholds
δpdf and δadt in pre-defined and adaptive STJG adjacency matri-
ces respectively, the dimension d of hidden states, the kernel size
K of each STJGC layer, and the threshold β in the loss function.
We tune these hyperparameters on the validation set that achieve
the best validation performance. We provide a parameter study in
Section V-C3. The detailed hyperparameter settings of STJGCN
on five datasets are presented in Table II.

The nonlinear activation function φ(·) in our STJGCN refers
to the ReLU activation [46], and we also add a Batch Normal-
ization [54] layer before each ReLU activation function.

We train our model using the Adam optimizer [55] with an
initial learning rate 0.001 and batch size 64 on a NVIDIA Tesla
V100 GPU card. We run the experiments for 200 epochs and
save the best model that evaluated on the validation set. We run
each experiment 5 times, and report the mean errors and standard
deviations.

3) Baseline Methods: We compare STJGCN with 11 base-
line methods, which could be divided into two categories. The
first category is the time-series prediction models, including:
� VAR [56]: Vector Auto-Regressive is a traditional time-

series model, which can capture pairwise relationships
among all traffic series.

� FC-LSTM [57]: an encoder-decoder framework using long
short-term memory (LSTM) with peephole for multi-step
time-series prediction.

� SVR [58]: Support Vector Regression utilizes a linear
support vector machine to perform regression.

The second category refers to the spatio-temporal graph neu-
ral networks, which are detailed as follows:
� DCRNN [4]: Diffusion Convolutional Recurrent Neural

Network, which models the traffic as a diffusion process,
and integrates diffusion convolution with recurrent neural
network (RNN) into the encoder-decoder architecture.

� STGCN [6]: Spatio-Temporal Graph Convolutional Net-
work, which employs graph convolutional network (GCN)
to capture spatial dependencies and 1D convolutional neu-
ral network (CNN) for temporal correlations modeling.

� ASTGCN [8]: Attention based Spatio-Temporal Graph
Convolutional Network that designs spatial and temporal
attention mechanisms to capture spatial and temporal pat-
terns, respectively.

� Graph WaveNet [7]: a graph neural network that per-
forms diffusion convolution with both pre-defined and self-
adaptive adjacency matrices to capture spatial dependen-
cies, and applies 1D dilated causal convolution to capture
temporal dependencies.

� STSGCN [9]: Spatio-Temporal Synchronous Graph Con-
volutional Network that designs spatio-temporal syn-
chronous modeling mechanism to capture localized spatio-
temporal correlations.

� AGCRN [10]: Adaptive Graph Convolutional Recurrent
Network that learns data-adaptive adjacency matrix for
graph convolution to model spatial correlations and uses
gated recurrent unit (GRU) to model temporal correlations.

� GMAN [39]: Graph Multi-Attention Network is an
encoder-decoder framework, which designs multiple spa-
tial and temporal attention mechanisms in the encoder
and decoder to model spatio-temporal correlations, and a
transform attention mechanism to transform information
from encoder to decoder.

� Z-GCNETs [11]: Time Zigzags at Graph Convolutional
Networks that introduce the concept of zigzag persis-
tence [59] into the graph convolutional networks for mod-
eling the spatial correlations and use the GRU networks to
capture the temporal dependencies.

C. Experimental Results

1) Overall Comparison: Table III presents the forecasting
performance comparison of our STJGCN with 11 baseline meth-
ods. We observe that: 1) the time-series prediction models, in-
cluding traditional approach (i.e., VAR), machine learning based
method (i.e., SVR), and deep neural network (i.e., FC-LSTM)
perform poorly as they only consider the temporal correlations.
2) Spatio-temporal graph neural networks generally achieve
better performances as they further model the spatial correlations
using graph neural networks. 3) Our STJGCN performs the best
in terms of all metrics on all datasets (1.4%∼7.7% improvement
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TABLE III
FORECASTING PERFORMANCE COMPARISON OF DIFFERENT MODELS ON FIVE DATASETS

TABLE IV
EFFECT OF SPATIO-TEMPORAL CONNECTIONS, DYNAMIC GRAPH MODELING, MULTI-RANGE INFORMATION, AND INDEPENDENT FULLY-CONNECTED LAYERS

against the second best results). Compared with other graph-
based methods, the advantages of our STJGCN are three-fold.
First, STJGCN models comprehensive spatio-temporal correla-
tions. Second, STJGCN is able to capture dynamic dependencies
at different time steps. Third, STJGCN leverages the information
of multiple spatio-temporal ranges.

2) Ablation Study: To better understand the effectiveness of
different components in STJGCN, we conduct ablation studies
on PeMSD4 and PeMSD8 datasets.

a) Effect of spatio-temporal connections: One difference
between our STJG with normal spatio-temporal graph is that we
explicitly add the spatio-temporal connections between different
nodes at different time steps. To evaluate the effectiveness of
this approach, we drop them separately/simultaneously from
the pre-defined or/and adaptive STJG. These three variants of
STJGCN are named as “w/o STC-pdf” (drop in pre-defined
STJG), “w/o STC-adt” (drop in adaptive STJG), and “w/o
STC” (drop in both types of STJG), respectively. The results
in Table IV demonstrate that the introduction of spatio-temporal
connections improves the performance as it helps the model to
explicitly capture comprehensive spatio-temporal correlations.

b) Effect of dynamic graph modeling: To evaluate the ef-
fect of dynamic graph modeling, we conduct experiments of
learning static adjacency matrices. Specifically, we design a
variant of STJGCN (i.e., “w/o dgm”) that only uses the node
embedding to generate the adaptive STJG adjacency matrix
without using the time feature. The results in Table IV validate
the effectiveness of modeling dynamic correlations among nodes
at different time steps.

c) Effect of multi-range information: To verify the effect
of multi-range information, we design a variant of STJGCN,
namely “w/o mr”, in which we do not combine multiple ranges
of information but directly use the output of the last STJGC

layer to produce the predictions. The results in Table IV indicate
the necessity of leveraging multi-range information. We further
design a variant “w/o att” that directly adds the outputs of each
STJGC layer together without using the multi-range attention
mechanism, and it performs worse than STJGCN, showing that
it is beneficial to distinguish the importance of different ranges
of information.

d) Effect of independent fully-connected layers: In the pre-
diction module, we useQ independent fully-connected layers to
produce the multi-step predictions. To evaluate the effectiveness
of this, we conduct experiments of using shared fully-connected
layers with Q units in the output layer to produce the Q time
steps predictions. We name this variant of STJGCN as “w/o
idp”, and present the experimental results in Table IV. We ob-
serve that STJGCN improves the performances by introducing
independent learning parameters for multi-step prediction. A
potential reason is that the traffic of different time steps may
exhibit different properties, and using different networks to gen-
erate the predictions at different forecasting horizons could be
beneficial.

e) Effect of different STJG adjacency matrix configura-
tions: We further conduct experiments of using different STJG
adjacency matrix configurations to evaluate their effectiveness.
As shown in Table V, the models with only pre-defined STJG
adjacency matrices (lines 3-4) achieve poor performances as
they do not capture the underlying dependencies in the data. We
observe that the models with only adaptive STJG adjacency ma-
trices (lines 5-6) could realize promising performances, which
indicates that our model can also be used even if the graph struc-
ture is unavailable. By using both pre-defined and adaptive STJG
adjacency matrices (line 7), we could achieve better results.
We further apply a gating fusion approach (Section IV-C1d)
in STJGCN (line 8) and observe consistent improvement of
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TABLE V
EFFECT OF DIFFERENT STJG ADJACENCY MATRIX CONFIGURATIONS. THE TERM “GF” IN THE LAST LINE DENOTES THE GATING FUSION APPROACH

Fig. 4. Parameter study on the PeMSD4 dataset.

the predictive performances, as the gate is able to control the
information flow between pre-defined and adaptive STJGs.

3) Parameter Study: We conduct a parameter study on five
core hyperparameters in STJGCN on the PeMSD4 and PeMSD8
datasets, including the thresholds δpdf and δadt in the pre-defined
and adaptive STJG adjacency matrices, respectively, the dimen-
siond of hidden states, the kernel sizeK in the STJGC operation,
and the thresholdβ in the loss function. We change the parameter
under investigation and fix other parameters in each experiment.
Figs. 4 and 5 show the experimental results on the PeMSD4 and
PeMSD8 datasets, respectively.

As shown in Figs. 4(a), (b), 5(a), and (b), the performance
is not strongly sensitive to the sparsity of the STJG adjacency
matrices, which we think is because the adaptive STJG adja-
cency matrix could adjust itself for aggregating the neighboring
information during the training stage. While, in general, a more
sparse adjacency matrix is beneficial to select the most related
nodes for each node, and leads to better results. However, a
too sparse graph may lose the connections between interrelated
nodes, and thus degrades the performances. According to the
validation loss, we set δpdf = δadt = 0.5 in the PeMSD4 dataset,
and δpdf = 0.5, δadt = 0.3 in the PeMSD8 dataset.

As shown in Figs. 4(c) and 5(c), increasing the number of
hidden units could enhance the model’s expressive capacity.
However, when it is larger than 64, the performance degrades
significantly, as the model needs to learn more parameters and
may suffer from the over-fitting problem.

Figs. 4(d) and 5(d) show that the model performs poorly when
the kernel size equals to 1, as it captures only the spatial depen-
dencies and does not consider the correlations in the temporal
dimension. We can further observe that it is enough to aggregate
the information from neighboring 2 or 3 time steps at each time
step. When K = 4, the model’s performance degrades. It is
possibly because that a node’s information at a time step may
only correlated to the nodes at a limited number of neighboring
time steps, and a largeK would introduce noises into the model.
Thus, according to the validation loss, we setK = 3 andK = 2
on the PeMSD4 and PeMSD8 datasets, respectively.

In the parameter study of the threshold β in the loss function,
we report the validation MAE, RMSE, and MAPE instead of
reporting the loss value, as the size of β directly impacts the size
of the loss value. As shown in Figs. 4(e), (g), 5(e), and (g), a larger
βmeans the model optimizes more on the MAPE loss and less on
the MAE loss, and thus leads to smaller MAPE and larger MAE.
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Fig. 5. Parameter study on the PeMSD8 dataset.

Fig. 6. Forecasting performance comparison at each horizon on the PeMSD4 dataset.

The RMSE can also be influenced, as shown in Figs. 4(f) and 5(f).
Through a comprehensive consideration of the validation MAE,
RMSE, MAPE and their standard deviations, we choose to use
β = 1.0 and β = 1.5 in the PeMSD4 and PeMSD8 datasets,
respectively.

4) Performance Comparison at Each Horizon: Figs. 6 and 7
present the forecasting performance comparison of our STJGCN
with five representative baseline methods (i.e., Graph WaveNet,
STSGCN, AGCRN, GMAN, and Z-GCNETs) at each prediction
time step on the PeMSD4 and PeMSD8 datasets, respectively.
We exclude other baseline methods due to their poorer per-
formances, as shown in Table III. We can observe that Graph
WaveNet performs well in the short-term (one or two time steps
ahead) prediction. However, its performance degrades quickly
with the increase of the forecasting horizon. The performance of
GMAN degrades slowly when the predictions are made further
into the future, and it performs well in the long-term (e.g., 12
time steps ahead) prediction, while still worse than STJGCN. In

general, our model achieves the best performances at almost all
horizons in terms of all three metrics on both datasets.

5) Model Size and Computation Time: We present the com-
parison of model size and computation time of our STJGCN
with graph-based baseline methods in Table VI.

The results in four PeMS datasets demonstrate the high
computation efficiency of our model. In terms of the model
size, STJGCN has fewer parameters than most of the baseline
models. In the training phase, our model runs faster than other
methods except for STGCN. In the inference stage, STGCN runs
very slowly as it adopts an iterative way to generate multi-step
predictions, while STJGCN and Graph WaveNet are the most
efficient. By further considering the prediction accuracy (see
Table III), our model shows superior ability in balancing predic-
tive performances and time consumption as well as parameter
settings.

The results in Seattle-Loop dataset show that out STJGCN
compares favorably to baseline methods. In terms of the model
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Fig. 7. Forecasting performance comparison at each horizon on the PeMSD8 dataset.

TABLE VI
COMPARISONS OF PARAMETER NUMBER AND COMPUTATION TIME. THE TRAINING TIME IS THE TIME COST PER EPOCH IN THE TRAINING PHASE, AND THE

INFERENCE TIME IS THE TOTAL TIME COST ON THE VALIDATION SET

size, STJGCN has not been affected by the larger amount of data,
and still has fewer parameters than most of the baseline models.
In the training phase, our STJGCN is faster than GMAN and
Z-GCNETs. Other 6 baselines are more efficient than STJGCN
but they show poor prediction performance (see Table III). In
the inference stage, STJGCN is only slower than STSGCN and
AGCRN, while both of which have worse prediction accuracy
than our model (see Table III).

VI. CONCLUSION

We proposed STJGCN, which models comprehensive and
dynamic spatio-temporal correlations and aggregates multiple
ranges of information to forecast the traffic conditions over sev-
eral time steps ahead on a road network. When evaluated on five
public traffic datasets, STJGCN showed high computation effi-
ciency and outperformed 11 state-of-the-art baseline methods.
Our model could be potentially applied to other spatio-temporal
data forecasting tasks, such as air quality inference and taxi
demand prediction. We plan to investigate this as future works.
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[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018, pp. 1–12.

[19] J. Jia and A. R. Benson, “Residual correlation in graph neural network
regression,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2020, pp. 588–598.

[20] Q. Li, Z. Han, and X.-M. Wu, “Deeper insights into graph convolutional
networks for semi-supervised learning,” in Proc. AAAI Conf. Artif. Intell.,
2020, Art. no. 433.

[21] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
deep locally connected networks on graphs,” in Proc. Int. Conf. Learn.
Representations, 2014, pp. 1–14.

[22] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural
networks on graphs with fast localized spectral filtering,” in Proc. Int.
Conf. Neural Inf. Process. Syst., 2016, pp. 3844–3852.

[23] S. Zhang, Y. Guo, P. Zhao, C. Zheng, and X. Chen, “A graph-based
temporal attention framework for multi-sensor traffic flow forecasting,”
IEEE Trans. Intell. Transp. Syst., vol. 23, no. 7, pp. 7743–7758, Jul. 2022.

[24] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” in Proc. AAAI Conf. Artif.
Intell., 2018, pp. 3482–3489.

[25] L. Shi, Y. Zhang, J. Cheng, and H. Lu, “Two-stream adaptive graph
convolutional networks for skeleton-based action recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 12026–12035.

[26] X. Yin, G. Wu, J. Wei, Y. Shen, H. Qi, and B. Yin, “A comprehensive
survey on traffic prediction,” 2020, arXiv: 2004.08555.

[27] J. Sun, J. Zhang, Q. Li, X. Yi, Y. Liang, and Y. Zheng, “Predicting citywide
crowd flows in irregular regions using multi-view graph convolutional
networks,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 5, pp. 2348–2359,
May 2022.

[28] J. Gu et al., “Exploiting interpretable patterns for flow prediction in
dockless bike sharing systems,” IEEE Trans. Knowl. Data Eng., vol. 34,
no. 2, pp. 640–652, Feb. 2022.

[29] R. Jiang et al., “DeepCrowd: A deep model for large-scale citywide crowd
density and flow prediction,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1,
pp. 276–290, Jan. 2023.

[30] S. Guo, Y. Lin, H. Wan, X. Li, and G. Cong, “Learning dynamics and
heterogeneity of spatial-temporal graph data for traffic forecasting,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 11, pp. 5415–5428, Nov. 2022.

[31] X. Ma, Z. Tao, Y. Wang, H. Yu, and Y. Wang, “Long short-term memory
neural network for traffic speed prediction using remote microwave sensor
data,” Transp. Res. Part C: Emerg. Technol., vol. 54, pp. 187–197, 2015.

[32] J. Zhang, Y. Zheng, and D. Qi, “Deep spatio-temporal residual networks
for citywide crowd flows prediction,” in Proc. AAAI Conf. Artif. Intell.,
2017, pp. 1655–1661.

[33] H. Yao et al., “Deep multi-view spatial-temporal network for taxi demand
prediction,” in Proc. AAAI Conf. Artif. Intell., 2018, pp. 2588–2595.

[34] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-temporal
similarity: A deep learning framework for traffic prediction,” in Proc. 33rd
AAAI Conf. Artif. Intell. 31st Innov. Appl. Artif. Intell. Conf. 9th AAAI Symp.
Educ. Adv. Artif. Intell., 2019, Art. no. 695.

[35] C. Zheng, X. Fan, C. Wen, L. Chen, C. Wang, and J. Li, “DeepSTD: Mining
spatio-temporal disturbances of multiple context factors for citywide traffic
flow prediction,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 9, pp. 3744–
3755, Sep. 2020.

[36] J. Zhang, Y. Zheng, J. Sun, and D. Qi, “Flow prediction in spatio-temporal
networks based on multitask deep learning,” IEEE Trans. Knowl. Data
Eng., vol. 32, no. 3, pp. 468–478, Mar. 2020.

[37] J. Ye, J. Zhao, K. Ye, and C. Xu, “How to build a graph-based deep learning
architecture in traffic domain: A survey,” 2020, arXiv: 2005.11691.

[38] Y. H. Lau and R. C.-W. Wong, “Spatio-temporal graph convolutional net-
works for traffic forecasting: Spatial layers first or temporal layers first?,”
in Proc. 29th Int. Conf. Adv. Geographic Inf. Syst., 2021, pp. 427–430.

[39] C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A graph multi-attention
network for traffic prediction,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 1234–1241.

[40] X. Wang et al., “Traffic flow prediction via spatial temporal graph neural
network,” in Proc. Web Conf., 2020, pp. 1082–1092.

[41] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998–6008.

[42] Y.-J. Lu and C.-T. Li, “AGSTN: Learning attention-adjusted graph spatio-
temporal networks for short-term urban sensor value forecasting,” in Proc.
IEEE Int. Conf. Data Mining, 2020, pp. 1148–1153.

[43] Y. Wang, H. Yin, H. Chen, T. Wo, J. Xu, and K. Zheng, “Origin-destination
matrix prediction via graph convolution: A new perspective of passenger
demand modeling,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 1227–1235.

[44] W. Chen, L. Chen, Y. Xie, W. Cao, Y. Gao, and X. Feng, “Multi-range
attentive bicomponent graph convolutional network for traffic forecasting,”
in Proc. AAAI Conf. Artif. Intell., 2020, pp. 3529–3536.

[45] D. Deng, C. Shahabi, U. Demiryurek, L. Zhu, R. Yu, and Y. Liu, “Latent
space model for road networks to predict time-varying traffic,” in Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1525–
1534.

[46] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. Int. Conf. Mach. Learn., 2010, pp. 807–814.

[47] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,”
IEEE Trans. Signal Process., vol. 45, no. 11, pp. 2673–2681, Nov. 1997.

[48] A. van den Oord et al., “WaveNet: A generative model for raw audio,”
2016, arXiv:1609.03499.

[49] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic con-
volutional and recurrent networks for sequence modeling,” 2018, arXiv:
1803.01271.

[50] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[51] Z. Cui, R. Ke, and Y. Wang, “Deep bidirectional and unidirectional
LSTM recurrent neural network for network-wide traffic speed prediction,”
2018, arXiv: 1801.02143.

[52] Z. Cui, K. Henrickson, R. Ke, and Y. Wang, “Traffic graph convolutional
recurrent neural network: A deep learning framework for network-scale
traffic learning and forecasting,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 11, pp. 4883–4894, Nov. 2020.

[53] Y. Shin and Y. Yoon, “PGCN: Progressive graph convolutional networks
for spatial-temporal traffic forecasting,” 2022, arXiv:2202.08982.

[54] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 448–456.

[55] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[56] J. D. Hamilton, Time Series Analysis. Princeton, NJ, USA: Princeton Univ.
Press, 1994.

[57] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2014,
pp. 3104–3112.

[58] H. Drucker, C. J. Burges, L. Kaufman, A. Smola, and V. Vapoik, “Support
vector regression machines,” in Proc. Int. Conf. Neural Inf. Process. Syst.,
1997, pp. 155–161.

[59] G. Carlsson and V. de Silva, “Zigzag persistence,” Found. Comput. Math.,
vol. 10, pp. 367–405, 2010.

Chuanpan Zheng received the BSc degree in applied
physics from Shandong University, Jinan, China, in
2012. He is currently working toward the PhD degree
in computer science and technology with the Fujian
Key Laboratory of Sensing and Computing for Smart
Cities, School of Informatics, Xiamen University,
China. His research interests include spatio-temporal
data representation learning and graph neural net-
works.

Authorized licensed use limited to: Xiamen University. Downloaded on January 02,2024 at 03:09:30 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG et al.: SPATIO-TEMPORAL JOINT GRAPH CONVOLUTIONAL NETWORKS FOR TRAFFIC FORECASTING 385

Xiaoliang Fan (Senior Member, IEEE) received the
PhD degree from the University Pierre and Marie
Curie, France, in 2012. He is a senior research spe-
cialist with the Fujian Key Laboratory of Sensing and
Computing for Smart Cites, School of Informatics,
and Key Laboratory of Multimedia Trusted Percep-
tion and Efficient Computing, Ministry of Education
of China, Xiamen University, China. His research
interests include trustworthy AI and federated learn-
ing, spatio-temporal data mining, and services com-
puting, etc. He has published more than 70 journals

the IEEE Transactions on Services Computing/IEEE Transactions on Mobile
Computing/IEEE Transactions on Intelligent Transportation Systems, etc.) and
top conferences (AAAI, IJCAI, WWW, etc.) papers. His works are funded by
NSFC and many industry collaborators. He is a senior member of the CCF.

Shirui Pan (Senior Member, IEEE) received the PhD
degree in computer science from the University of
Technology Sydney (UTS), Ultimo, NSW, Australia.
He is currently a full professor with the School of
Information and Communication Technology, Grif-
fith University, Australia. His research interests in-
clude data mining and machine learning. To date,
he has published more than 100 research papers in
top-tier journals and conferences, including the IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on Knowledge and Data

Engineering, IEEE Transactions on Neural Networks and Learning Systems,
NeurIPS, ICML, and KDD. He is recognised as one of the AI 2000 AAAI/IJCAI
Most Influential Scholars in Australia (2021).

Haibing Jin received the BSc degree in computer
science and technology from Huazhong Agricultural
University, Wuhan, China, in 2022. He is currently
working toward the MAEng degree in computer sci-
ence and technology with the Fujian Key Laboratory
of Sensing and Computing for Smart Cities, School of
Informatics, Xiamen University, China. His research
interests include spatio-temporal data representation
learning and federated learning.

Zhaopeng Peng received the BSc degree in digital
media technology from Shandong University, Weihai,
China, in 2022. He is currently working toward the
MAEng degree in computer science and technology
with the Fujian Key Laboratory of Sensing and Com-
puting for Smart Cities, School of Informatics, Xia-
men University, China. His research interests include
spatio-temporal data representation learning and fed-
erated learning.

Zonghan Wu received the BS degree in systems
science from the University of Shanghai for Science
and Technology, and the MS degree in statistics from
Linköping University. He is currently working toward
the PhD degree in computer science with the Uni-
versity of Technology Sydney (UTS), Ultimo, NSW,
Australia.

Cheng Wang (Senior Member, IEEE) received the
PhD degree in information and communication en-
gineering from the National University of Defense
Technology, Changsha, China, in 2002. He is cur-
rently a NanQiang professor with the School of In-
formatics, and director of Fujian Key Laboratory of
Sensing and Computing for Smart Cities, both with
Xiamen University, China. His research interests in-
clude remote sensing image processing, mobile Li-
DAR data analysis, and multi-sensor fusion. He has
co-authored more than 150 papers in referred journals

and top conferences including the IEEE Transactions on Geoscience and Remote
Sensing, Pattern Recognition, IEEE Transactions on Intelligent Transportation
Systems, AAAI, CVPR, IJCAI, and ISPRS-JPRS.

Philip S. Yu (Fellow, IEEE) received the PhD degree
in electrical engineering from Stanford University,
Stanford, CA, USA. He is currently a distinguished
professor of computer science with the University
of Illinois at Chicago, Chicago, IL, USA, where he
is also the Wexler chair in information technology.
He has published more than 830 articles in refereed
journals and conferences. He holds or has applied for
more than 300 U.S. patents. His research interests in-
clude Big Data, data mining, data streams, databases,
and privacy. He is a fellow of the ACM. He received

the ACM SIGKDD 2016 Innovation Award, the Research Contributions Award
from the IEEE International Conference on Data Mining in 2003, and the
Technical Achievement Award from the IEEE Computer Society in 2013.

Authorized licensed use limited to: Xiamen University. Downloaded on January 02,2024 at 03:09:30 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


