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Abstract

LiDAR-based absolute pose regression estimates the
global pose through a deep network in an end-to-end manner,
achieving impressive results in learning-based localization.
However, the accuracy of existing methods still has room
to improve due to the difficulty of effectively encoding the
scene geometry and the unsatisfactory quality of the data.
In this work, we propose a novel LiDAR localization frame-
work, SGLoc, which decouples the pose estimation to point
cloud correspondence regression and pose estimation via
this correspondence. This decoupling effectively encodes
the scene geometry because the decoupled correspondence
regression step greatly preserves the scene geometry, lead-
ing to significant performance improvement. Apart from this
decoupling, we also design a tri-scale spatial feature aggre-
gation module and inter-geometric consistency constraint
loss to effectively capture scene geometry. Moreover, we
empirically find that the ground truth might be noisy due
to GPS/INS measuring errors, greatly reducing the pose
estimation performance. Thus, we propose a pose quality
evaluation and enhancement method to measure and cor-
rect the ground truth pose. Extensive experiments on the
Oxford Radar RobotCar and NCLT datasets demonstrate the
effectiveness of SGLoc, which outperforms state-of-the-art
regression-based localization methods by 68.5% and 67.6%
on position accuracy, respectively.

1. Introduction

Estimating the position and orientation of LiDAR from
point clouds is a fundamental component of many applica-
tions in computer vision, e.g., autonomous driving, virtual
reality, and augmented reality.

Contemporary state-of-the-art LiDAR-based localization
methods explicitly use maps, which match the query point
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Figure 1. LiDAR Localization results of our method and
PosePN++ [51] (state-of-the-art method) in urban (left) and school
(right) scenes from Oxford Radar RobotCar [2] and NCLT [34]
datasets. The star indicates the starting position.

cloud with a pre-built 3D map [18, 23, 27, 49]. However,
these methods usually require expensive 3D map storage
and communication. One alternative is the regression-
based approach, absolute pose regression (APR), which di-
rectly estimates the poses in the inference stage without
maps [8, 24, 25, 40, 45]. APR methods typically use a CNN
to encode the scene feature and a multi-layer perceptron to
regress the pose. Compared to map-based methods, APR
does not need to store the pre-built maps, accordingly reduc-
ing communications.

For (1), APR networks learn highly abstract global scene
representations, which allow the network to classify the
scene effectively [25]. However, the global features usually
cannot encode detailed scene geometry, which is the key
to achieving an accurate pose estimation [10, 11, 38, 39].
Prior efforts have tried to minimize the relative pose or
photometric errors to add geometry constraints by pose
graph optimization (PGO) [4, 21] or novel view synthesis
(NVS) [10,11]. However, this introduces additional computa-
tions, limiting its wide applications. For (2), we empirically
find current large-scale outdoor datasets suffer from various
errors in the data due to GPS/INS measuring errors. It affects
the APR learning process and makes it difficult to evaluate
the localization results accurately. To our knowledge, the
impact of data quality on localization has not been carefully
investigated in the existing literature.
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This paper proposes a novel framework, SGLoc, which
can (1) effectively capture the scene geometry; In addition,
we propose a data pre-processing method, Pose Quality Eval-
uation and Enhancement (PQEE), which can (2) improve
data quality. (1) Existing APR methods conduct end-to-
end regression from the point cloud in LiDAR coordinate
to pose. Unlike them, SGLoc decouples this process to
(a) regression from the point cloud in LiDAR coordinate
to world coordinate and (b) pose estimation via the point
cloud correspondence in LiDAR and world coordinate us-
ing RANSAC [17]. Importantly, step (a) can effectively
preserve the scene geometry, which is key for pose estima-
tion [10, 11, 38, 39]. To achieve high accuracy in step (a), we
design a Tri-scale Spatial Feature Aggregation (TSFA) mod-
ule and an Inter-Geometric Consistency Constraint (IGCC)
loss to effectively capture scene geometry. (2) We empir-
ically find that pose errors in the data greatly degrade the
pose estimation performance. For example, the ground truth
pose obtained by GPS/INS suffers from measuring errors.
To address this problem, we proposed a PQEE method which
can measure the errors in the pose and correct them after-
ward. We conduct extensive experiments on Oxford Radar
RobotCar [2] and NCLT [34] datasets, and results show that
our method has great advantages over the state-of-the-art, as
demonstrated in Fig. 1.

Our contributions can be summarized as follows:
• SGLoc is the first work to decouple LiDAR localization

into point cloud correspondences regression and pose
estimation via predicted correspondences, which can ef-
fectively capture scene geometry, leading to significant
performance improvement.

• We propose a novel Tri-Scale Spatial Feature Aggre-
gation (TSFA) module and an Inter-Geometric Consis-
tency Constraint (IGCC) loss to further improve the
encoding of scene geometry.

• We propose a generalized pose quality evaluation and
enhancement (PQEE) method to measure and correct
the pose errors in the localization data, improving
34.2%/16.8% on position and orientation for existing
LiDAR localization methods.

• Extensive experiments demonstrate the effectiveness
of SGLoc, which outperforms state-of-the-art LiDAR
localization methods by 68.1% on position accuracy. In
addition, to our knowledge, we are the first to reduce the
error to the level of the sub-meter on some trajectories.

2. Related Work
2.1. Map-based Localization

Map-based methods aim to match the query point cloud
with a pre-built 3D map, which can be classified into
retrieval-based [18, 27, 30, 44, 49] and registration-based
methods [14, 16, 20, 32, 37, 47]. Retrieval-based methods

cast localization as a place recognition problem, which finds
the most similar point cloud in the database. Registration-
based localization performs fine matching between the query
point cloud and the pred-built map. DCP [47] is an impres-
sive work investigating geometry correspondences generated
by weighted calculation for pose estimation. Unlike this,
SGLoc directly regresses the correspondences. In addition,
Some methods combine both retrieval and registration tech-
niques to achieve better localization accuracy in dense urban
areas [9, 12, 50, 52]. However, the high cost of 3D map stor-
age and communication limits the widespread application of
map-based methods.

2.2. Regression-based Localization

Recently, in camera localization, the scene coordinate
regression method has been designed, which regresses
2D-3D correspondences and estimates the pose with PnP-
RANSAC [4, 6, 7, 22, 54]. While these methods have shown
impressive results in small and medium-sized scenes, e.g.,
7-Scenes [42], they do not scale well to large scenes [5].
HSCNet attempts to solve this problem by conditioning dis-
crete location labels around each pixel [28], but it still cannot
be applied to large-scale outdoor scenes, e.g., the street scene
in the Cambridge landmark dataset [25], which covers an
area of about 5hm2.
Absolute pose regression. APR methods typically use the
same basic pipeline: first, extracting high-level features us-
ing a CNN and then using these features to regress the 6-DoF
pose. PoseNet [25] originally defines this task using a modi-
fied GoogleNet [43] to regress camera poses. Successors of
PoseNet have focused on improving the framework through
model architecture and loss function. E-PoseNet [33] pro-
poses a translation and rotation equivariant CNN that directly
induces representations of camera motions into the feature
space. PAE [41] uses the pose auto-encoders framework to
significantly reduce model parameters. However, the above
methods learn highly abstract global scene representations,
leading to various wrong predictions due to the lack of effec-
tive scene geometry encoding.

Recent research suggests scene geometry is key to accu-
rate pose estimation [10,11,38,39]. Geometric PoseNet [24]
investigates geometric loss for learning to regress position
and orientation simultaneously with scene geometry. Map-
Net [8] adds pairwise geometric constraints between video
frames using additional VO algorithms. AtLoc [45] utilizes
a self-attention mechanism to adaptively focus on the im-
port targets in the scene. MS-Transformer [40] proposes a
transformer-based method to learn robust features. Direct-
PoseNet [11] adapts additional photometric loss by com-
paring the query image with NVS on the predicted pose.
DFNet [10] explores a direct matching scheme in feature
space, leading to a more robust performance than Direct-
PoseNet. However, these methods require auxiliary algo-
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Figure 2. Overview of the proposed framework including point cloud correspondence regression (top row) and 6-DoF pose estimation
(bottom row). F1, F2, and F3 are the extracted feature maps with different receptive fields.

rithms, e.g., PGO, NVS, introducing additional computa-
tions. Unlike these methods, we decouple the pose estima-
tion process to (1) regression point cloud correspondence and
(2) pose estimate via the correspondence using RANSAC.
Through step (1), scene geometry can be effectively encoded
without additional computations.

Recently, LiDAR-based APR methods, e.g., Point-
Loc [46], PoseSOE [51], and PosePN++ [51], have shown
impressive performance on large-scale outdoor datasets be-
cause the point cloud is robust to illumination changes and
rich in geometric information. However, effectively encod-
ing scene geometry remains quite challenging.

3. Method
Recent APR methods have achieved impressive results

in localization. However, they do not effectively encode
the scene geometry and measure the data quality, leading
to the accuracy still having room to improve. In this paper,
we propose SGLoc and a Pose Quality Evaluation Enhance-
ment (PQEE) method to address these problems. Sec. 3.1
elaborates SGLoc, which can effectively capture the scene
geometry. Then, a PQEE method (Sec. 3.2) is proposed to
measure and correct the pose errors in the data.

3.1. SGLoc

We now introduce the proposed SGLoc, as shown in
Fig. 2, which can be divided into (1) point cloud corre-
spondence regression: convert the Raw LiDAR Point Cloud
(RPC) to its corresponding Point Cloud in World coordi-
nate frame (WPC) and (2) 6-DoF pose estimation: estimate
pose via matching RPC and WPC. In this work, we design a
sparse-convolution-based FCN [15,31] to implement SGLoc,

which contains a feature extractor, a Tri-Scale Spatial Feature
Aggregation (TSFA) module, and a regressor. The feature
extractor and regressor generate feature maps with differ-
ent receptive fields and achieve point cloud correspondence
via regression, respectively. The TSFA module and inter-
geometric consistency constraint (IGCC) loss are proposed
to effectively capture scene geometry.
Framework. Here we formulate the framework of SGLoc.
Given the query point cloud Pt ∈ RN×3, we aim to estimate
its global 6-DoF pose p. Each pose p = [x,q] is represented
by a position vector x ∈ R3 and an orientation vector q ∈ Rr

(e.g., a 4D unit quaternion or a 3D Euler angle). Hence, we
first define the query point cloud pose p as the transformation
that maps 3D points in LiDAR coordinate frame, denoted as
l, to 3D points in world coordinate frame, denoted as w, i.e.

wi = T li, (1)

where i denotes the point index in the query point cloud; T
is a 4× 4 matrix representation of the pose p.

Then, we denote the complete set of scene coordinates
with a global pose for the query point cloud as Y , i.e., yi ∈
Y . As shown in Fig. 2, (1) for point cloud correspondence
regression, we utilize a neural network to learn a function F :
Y = F (Pt). (2) Regarding 6-DoF pose estimation during
inference, we utilize the RANSAC algorithm to select M
group from the predicted correspondence Y , and optimize
the energy function as follows:

T ′ = argmin
T

|M |∑
i

∥T li − wi∥2, (2)

where M is set to 3; i denotes the point index; T ′ is the
estimated transformation matrix. Then, T ′ can be used to
calculate the above energy function of each correspondence
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Figure 3. Tri-Scale Spatial Feature Aggregation (TSFA) Module.

in Y to filter outliers. The above process will be repeated
until convergence. Finally, the estimated T ′ can easily be
converted into a vectorized pose.

It is worth noting that during training, SGLoc only re-
quires the input point cloud and the pose, which allows for
effective scene geometry encoding by minimizing correspon-
dence distance without any additional computations.
Tri-scale spatial feature aggregation. As described above,
SGLoc estimates the pose via the regressed correspondence
Y . Therefore, the spatial details in network features are
critical to localization accuracy. To effectively capture the
spatial details at shallow layers, inspired by the attention
mechanism [19, 29, 53], we introduce a Tri-Scale Spatial
Feature Aggregation (TSFA) module.

As shown in Fig. 2, the TSFA module takes the low-
level features F1 and F2 and high-level feature F3 as the
input. We elaborate the architecture of TSFA module in
Fig. 3. For convenience, we refer F ′

1 = H(D(H(F1)), F ′
2 =

H(D(H(F2)) and F ′
3 = H(F3)), where D indicates the

down-sampling andH denotes the convolution followed by
a batch normalization and a ReLU activation function. We
first squeeze the channels of the features (F1, F2, F3) to
1. Then, we conduct the addition operation and sigmoid
activation to obtain the spatial attention mask, which can
adaptively enhance spatial details. Finally, we apply dot
product and concatenation to achieve a powerful feature with
rich spatial details and structure information. The output can
be expressed as:

Fo = [σ(F ′
1 + F ′

3)⊙ F1, σ(F
′
2 + F ′

3)⊙ F2, F3] , (3)

where σ is the sigmoid function;⊙ is dot product; [·] denotes
the concatenation.
Inter-geometric consistency constraint. Training the net-
work with l1 loss (LL1) can effectively minimize the distance
between the predicted and the ground truth scene coordinates.
However, the above constraint is a node-wise loss, which
supervises each correspondence individually. This is unfa-
vorable for learning scene geometry. Inspired by spatial com-
patibility [1, 13], which assumes that two correspondences

Algorithm 1 Pseudocode for PQEE method
Input: Raw point cloud set Pr and pose set Tr; Standard
point cloud set Ps and pose set Ts

Output: Pose error E′; Quality enhanced pose set T ′
r

Initialization: Build submaps Mr = {Mr1 , . . . ,Mrn} by
Pr and Tr; Build submaps Ms = {Ms1 , . . . ,Msm} by Ps

and Ts; E ← 0; N ← 0

1: for all Mri ∈Mr do
2: Search Mri ’s nearest Msj

3: Register to obtain correspondences C and Tij

4: T ′
ri ← TijTsi

5: for all Ck ∈ C do
6: Calculate the Euclidean distance dk
7: E ← E + dk
8: N ← N + 1

9: return E/N , T ′
r

have a higher score if the difference of spatial distance be-
tween them, we propose an Inter-Geometric Consistency
Constraint (IGCC) loss to well learn scene geometry:

LIGCC =
1

|Y|2
∑
i,j

∥di,j − d∗i,j∥1, (4)

where d∗i,j = ∥y∗i − y∗j ∥1 is the ground truth inter-geometric
consistency value. This constraint supervises the pairwise
distance between the correspondences, serving as a comple-
ment to the node-wise supervision.
Loss function. During training, the point cloud with global
poses predicted by the network F is optimized by LL1 and
LIGCC . For LL1, we minimize the average plain Euclidean
distance between the predicted scene coordinates yi, and the
ground truth of scene coordinates y∗i :

LL1 =
1

|Y|
∑
yi∈Y

∥yi − y∗i ∥1. (5)

The aforementioned LIGCC works with LL1 to come up
with the final loss:

L = LL1 + λLIGCC , (6)

where λ is a hyper-parameter to balance the two constraints.

3.2. Pose Quality Evaluation and Enhancement

For localization, a high-quality dataset should precisely
provide the same position values in the same position on dif-
ferent days. However, existing large-scale outdoor datasets
do not satisfy this requirement since various pose errors
in the data caused by GPS/INS measuring errors. We em-
pirically find these inaccuracies significantly degrade local-
ization accuracy. Therefore, we propose a Pose Quality
Evaluation and Enhancement (PQEE) method to measure
and correct pose errors in the data, see Alg. 1.

We first build submaps from point clouds and poses pro-
vided by datasets. Then, for each submap of the raw point
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Figure 4. Trajectories of the baselines and the proposed method on the Oxford (top) and NCLT (bottom) datasets. The ground truth and
predictions are shown in black and red, respectively. The star indicates the starting position.

cloud, we search for its nearest submap in the standard point
cloud, which is a pre-specified day of data, using the pro-
vided pose. The submaps are then registered to obtain the
correspondence and transformation matrix, which can be
used to evaluate and enhance the quality of the pose.
Submaps building. The trajectory is divided into segments
based on the prespecified distance to generate the sub-point
cloud set. Then, we build the local submap according to
Eq. (1), where the position of this submap is defined as the
average position of the contained point cloud.
Registration. For each submap Mri , we search for its near-
est submap Msj based on position. Then, the ICP algo-
rithm [3] is used to align the pair of submaps to obtain
correspondence C and relative transformation matrix Tij .
Pose evaluation and refinement. We calculate the aver-
age Euclidean distance between the correspondences of all
submaps for pose quality evaluation. For pose refinement,
the Tij is used to transform the pose of all point clouds in the

Mri to correct pose errors in the data. The algorithm results
are convincing when the transformed pose error is below the
pre-specified threshold.

4. Experiments
4.1. Settings
Benchmark datasets. We conduct experiments on two large-
scale benchmark datasets. Oxford Radar RobotCar [2] (Ox-
ford) is an urban scene localization dataset that contains
over 32 repetitions traversals of a center Oxford route (about
10km, 200hm2). The dataset contains different weather, traf-
fic, and lighting conditions. The point cloud is collected
by dual Velodyne HDL-32E LiDAR. Ground truth pose is
generated by the interpolations of INS. We use the data of
11-14-02-26, 14-12-05-52, 14-14-48-55, and 18-15-20-12
as the training set. The data of 15-13-06-37, 17-13-26-39,
17-14-03-00, and 18-14-14-42 are used as the test data.

NCLT [34] dataset is collected by sensors on a Segway
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Oxford dataset
Methods PNVLAD DCP PosePN PosePN++ PoseSOE PoseMinkLoc PointLoc SGLoc

15-13-06-37 18.14m, 3.28◦ 16.04m, 4.54◦ 14.32m, 3.06◦ 9.59m, 1.92◦ 7.59m, 1.94◦ 11.20m, 2.62◦ 12.42m, 2.26◦ 3.01m, 1.91◦
17-13-26-39 24.57m, 3.08◦ 16.22m, 3.56◦ 16.97m, 2.49◦ 10.66m, 1.92◦ 10.39m, 2.08◦ 14.24m, 2.42◦ 13.14m, 2.50◦ 4.07m, 2.07◦

17-14-03-00 19.93m, 3.13◦ 14.87m, 3.45◦ 13.48m, 2.60◦ 9.01m, 1.51◦ 9.21m, 2.12◦ 12.35m, 2.46◦ 12.91m, 1.92◦ 3.37m, 1.89◦

18-14-14-42 15.59m, 2.63◦ 12.97m, 3.99◦ 9.14m, 1.78◦ 8.44m, 1.71◦ 7.27m, 1.87◦ 10.06m, 2.15◦ 11.31m, 1.98◦ 2.12m, 1.66◦
Average 19.56m, 3.03◦ 15.03m, 3.89◦ 13.48m, 2.48◦ 9.43m, 1.77◦ 8.62m, 2.00◦ 11.96m, 2.41◦ 12.45m, 2.17◦ 3.14m, 1.88◦

Quality-enhanced Oxford dataset
15-13-06-37 10.90m, 2.49◦ 10.61m, 2.56◦ 9.47m, 2.80◦ 4.54m, 1.83◦ 4.17m, 1.76◦ 6.77m, 1.84◦ 10.75m, 2.36◦ 1.79m, 1.67◦

17-13-26-39 14.60m, 2.46◦ 11.44m, 2.14◦ 12.98m, 2.35◦ 6.44m, 1.78◦ 6.16m, 1.81◦ 8.84m, 1.84◦ 11.07m, 2.21◦ 1.81m, 1.76◦
17-14-03-00 11.28m, 2.21◦ 10.90m, 2.01◦ 8.64m, 2.19◦ 4.89m, 1.55◦ 5.42m, 1.87◦ 8.08m, 1.69◦ 11.53m, 1.92◦ 1.33m, 1.59◦

18-14-14-42 9.00m, 1.90◦ 9.51m, 2.08◦ 6.26m, 1.64◦ 4.64m, 1.61◦ 4.16m, 1.70◦ 6.56m, 2.06◦ 9.82m, 2.07◦ 1.19m, 1.39◦
Average 11.45m, 2.27◦ 10.62m, 2.20◦ 9.34m, 2.25◦ 5.13m, 1.69◦ 4.98m, 1.79◦ 7.56m, 1.86◦ 10.79m, 2.14◦ 1.53m, 1.60◦

Table 1. Position error (m) and orientation error (◦) for various methods on the Oxford and quality-enhanced Oxford datasets.

Figure 5. Cumulative distributions of the position errors (m) on the Oxford and quality-enhanced Oxford dataset. The x-axis is the position
error, and the y-axis is the percentage of point clouds with errors less than the value.

robotic platform on the University of Michigan’s North Cam-
pus. The dataset contains 27 traversals, where each traversal
is nearly 5.5km and covers 45hm2. The point cloud is gath-
ered by a Velodyne HDL-32E LiDAR. The 6-DoF ground
truth pose is obtained by SLAM. The data of 2012-01-22,
2012-02-02, 2012-02-18, and 2012-05-11 are treated as the
training set, and the data of 2012-02-12, 2012-02-19, 2012-
03-31, and 2012-05-26 are used as the test set. More details
about datasets can be found in the supplementary.
Implementation details. The proposed SGLoc is imple-
mented with PyTorch [35] and Minkowski Engine [15]. We
run our code on a PC equipped with an Intel (R) Xeon (R)
Silver 4214R CPU, 64GB of RAM, and a single NVIDIA
RTX 3090 GPU. During training, we employ an Adam opti-
mizer [26] with an initial learning rate of 0.001. The weight
λ is set to 1 for all datasets. On the Oxford dataset, we
use the point cloud from the left LiDAR and set the voxel
size to 0.2m. On the NCLT dataset, the voxel size is 0.25m.
The TSFA module uses feature maps from the 3rd, 5th, and
8th convolution blocks with 128, 256, and 512 dimensions,
respectively. Each convolution block consists of two convo-
lution layers and a residual connection.
Baselines. To validate the performance of SGLoc, we com-

pare it with several state-of-the-art learning-based LiDAR
localization approaches. PointNetVLAD (PNVLAD) [44]
is a large-scale point cloud retrieval-based method, and
DCP [47] is a point cloud registration approach which em-
ploys PointNet [36] and DGCNN [48] as the embedding
network. PNVLAD and DCP use the same configuration as
PointLoc [46]. PosePN [51], PosePN++ [51], PoseSOE [51],
PoseMinkLoc [51], and PointLoc are LiDAR-based local-
ization framework that uses a single-frame point cloud for
absolute pose regression.
Results of pose quality evaluation and enhancement. On
the Oxford and NCLT datasets, the data of 14-14-48-55 and
2012-02-18 are selected as the standard, respectively. We
set the distance of the trajectory segments to build sub-maps
to 20m and the voxel size to 0.1m to reduce the duplicate
points. Registration is considered successful when the root-
mean-square error of correspondence is below 1m. The
evaluated pose error of Oxford and NCLT datasets are 3.24m
and 0.25m, respectively. Obviously, the ground truth poses
in the data of NCLT is accurate. However, the pose of the
Oxford dataset has various errors. Therefore, we perform
quality enhancement on the Oxford dataset and obtain the
enhanced pose with errors of 0.91m.
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Methods PNVLAD DCP PosePN PosePN++ PoseSOE PoseMinkLoc PointLoc SGLoc
2012-02-12 7.75m, 6.49◦ 9.84m, 6.84◦ 9.45m, 7.47◦ 4.97m, 3.75◦ 13.09m, 8.05◦ 6.24m, 5.03◦ 7.23m, 4.88◦ 1.20m, 3.08◦
2012-02-19 7.47m, 5.49◦ 8.27m, 5.16◦ 6.15m, 5.05◦ 3.68m, 2.65◦ 6.16m, 4.51◦ 4.87m, 3.94◦ 6.31m, 3.89◦ 1.20m, 3.05◦

2012-03-31 6.98m, 5.67◦ 8.94m, 5.96◦ 5.79m, 5.28◦ 4.35m, 3.38◦ 5.24m, 4.56◦ 4.23m, 4.03◦ 6.71m, 4.32◦ 1.12m, 3.28◦

2012-05-26 14.34m, 7.93◦ 15.62m, 7.99◦ 13.47m, 7.77◦ 9.59m, 4.49◦ 12.60m, 7.67◦ 10.32m, 6.52◦ 10.02m, 5.32◦ 3.81m, 4.74◦

Average 9.14m, 6.40◦ 10.67m, 6.49◦ 8.72m, 6.39◦ 5.65m, 3.57◦ 9.27m, 6.20◦ 6.42m, 4.88◦ 7.57m, 4.60◦ 1.83m, 3.54◦

Table 2. Position error (m) and orientation error (◦) for various methods on the NCLT dataset.

Figure 6. Cumulative distributions of the position errors (m) on the NCLT dataset. The x-axis is the position error, and the y-axis is the
percentage of point clouds with errors less than the value.

4.2. Localization Results
Localization on the Oxford dataset. We first evaluate the
proposed SGLoc on the Oxford dataset, as shown in Tab. 1.
We report the mean position and orientation errors over the
full test trajectories. The proposed framework achieves a
mean error of 3.14m/1.88◦, outperforming all competitors.
Specifically, compared to PoseSOE, it improves by 63.6%
and 6% on position and orientation, respectively.

We further evaluate the proposed SGLoc on the quality-
enhanced Oxford dataset, as shown in Tab. 2. Clearly, the
mean position and orientation errors of all methods are sig-
nificantly degraded compared to Tab. 1, illustrating the effec-
tiveness and generalizability of the proposed PQEE method.
SGLoc achieves a mean error of 1.53m/1.60◦, surpassing
other methods by a large margin. Specifically, it improves
PoseSOE by 69.3%/10.6%. These results demonstrate that
the proposed SGLoc can perform localization well in large-
scale outdoor scenes.

The first two rows in Fig. 4 illustrate the predicted tra-
jectories on 17-14-03-00. The trajectory of SGLoc closely
overlaps with the ground truth, demonstrating its accuracy.
Fig. 5 shows the cumulative distributions of position errors
on different trajectories. SGLoc achieves the desired per-
formance, indicating that it effectively captures the scene
geometry, leading to improved accuracy.
Localization on the NCLT dataset. Then, we evaluate
the proposed SGLoc on the NCLT dataset. Tab. 2 sum-
marizes the results of all methods with mean position and
orientation errors. Apparently, SGLoc significantly outper-
forms the existing methods with a mean error of 1.83m/3.54◦.
Our approach improves by 67.6% on position compared to
PosePN++. It should be explained that there are more out-
liers on 2012-05-26 due to the various differences between
the test and training trajectories.

The last two rows of Fig. 4 show the predicted trajectory

15-13-06-37 17-13-26-39 17-14-03-00 18-14-14-42
SGLoc w/o PGO 1.79m, 1.67◦ 1.81m, 1.75◦ 1.33m, 1.59◦ 1.19m, 1.39◦

SGLoc w/ PGO 1.58m, 1.10◦ 1.56m, 1.16◦ 1.10m, 1.18◦ 0.99m, 1.04◦

2012-02-12 2012-02-19 2012-03-31 2012-05-26
SGLoc w/o PGO 1.20m, 3.08◦ 1.20m, 3.05◦ 1.12m, 3.28◦ 3.81m, 4.74◦

SGLoc w/ PGO 0.88m, 2.35◦ 0.85m, 2.06◦ 0.79m, 2.34◦ 3.25m, 3.52◦

Table 3. Localization results of SGLoc with PGO on the quality-
enhanced Oxford and NCLT datasets.

of 2012-03-31. Our prediction is closer to the ground truth
and smoother than the competitors. The cumulative distribu-
tions of position errors are shown in Fig. 6, demonstrating
the promising performance of the proposed SGLoc. It means
that SGLoc can capture the scene geometry more efficiently
compared to existing LiDAR-based localization methods.

4.3. Localization Accuracy at Sub-meter Level

Similar to MapNet [8], we utilize PGO as post-processing
to further improve localization results. As shown in Tab. 3,
our method has further improved in accuracy with PGO.
Specifically, the SGLoc achieves accuracy at the sub-meter
level on 18-14-14-42 of the quality-enhanced Oxford dataset.
Moreover, in all scenes of the NCLT dataset (except 2012-
05-26), the mean error of SGLoc is 0.84m/2.25◦. To our
knowledge, SGLoc is the first regression-based method to
reduce the error to the level of the sub-meter on some trajec-
tories, which bridges the gaps in practical applications. For
more results, please refer to the supplementary.

4.4. Ablation Study

Ablation on PQEE. As shown in Tab. 4, the proposed
method outperforms the vanilla model without proposed
modules by 43.5%/14.9%. Moreover, the performance of
PQEE is significantly enhanced with or without IGCC or
TSFA. For instance, PQEE considerably surpasses that with-
out PQEE under IGCC and TSFA, achieving a mean error
of 1.53m/1.60◦ vs. 3.14m/1.88◦.
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IGCC TSFA Oxford w/o PQEE Oxford w/ PQEE NCLT

1 3.95m/2.89◦ 2.23m/2.46◦ 2.73m/5.19◦

2 ! 3.46m/2.67◦ 2.12m/2.32◦ 2.62m/5.11◦

3 ! 3.23m/2.10◦ 1.68m/1.67◦ 1.98m/3.51◦

4 ! ! 3.14m/1.88◦ 1.53m/1.60◦ 1.83m/3.54◦

Table 4. Ablation study on the Oxford and NCLT datasets.

Ablation on IGCC. We further conduct ablation experi-
ments to demonstrate the importance of IGCC loss. In
Tab. 4, the comparison between Row 1 and Row 2 shows the
module notably improves accuracy. On the Oxford dataset,
compared to the vanilla model, IGCC obtains a 12.4%/7.6%
improvement. On the NCLT dataset, IGCC also leads to
improvements. Furthermore, IGCC improves localization
accuracy compared to the method with TSFA only. This
demonstrates the proposed design is helpful for capturing
the scene geometry.
Ablation on TSFA. The TSFA results are reported in Row
3 of Tab. 4. On the Oxford and NCLT dataset, compared
to the results in Row 1, it yields an average 23.5%/30.6%
improvement on position and orientation. This significant
improvement verifies that the proposed TSFA module can
further improve the encoding of scene geometry.

4.5. Runtime
For the Oxford and NCLT datasets, the LiDAR scan rate

is 20Hz and 10Hz, respectively. Therefore, the real-time per-
formance here means that the running time of each scanning
data is less than 50ms and 100ms, respectively. Tab. 5 shows
the running time on the Oxford and NCLT dataset. On the
Oxford dataset, SGLoc takes a running time of 38ms per
frame, with the correspondence regression stage consuming
25ms and the pose estimation stage consuming 13ms. On
the NCLT dataset, the running times are 75ms, 41ms, and
34ms, respectively. Note that the running time of PNVLAD,
DCP, PosePN, and PoseMinkLoc are less than 10ms due to
the simplicity of their networks. Therefore, Our SGLoc can
achieve real-time localization and is very competitive with
these methods, but the performance of SGLoc is much better.

5. Discussion
LiDAR localization in large-scale outdoor scenes is a crit-

ical component of autonomous driving. However, existing
APR methods still face challenges in effectively encoding
scene geometry and dealing with unsatisfactory data quality,
resulting in suboptimal accuracy. To overcome these chal-
lenges, we propose SGLoc and PQEE, which significantly
improves accuracy. Compared to previous work, SGLoc
stands out due to the following differences.
Difference between SGLoc and DSAC++. Camera coor-
dinate regression (DSAC++ [5]) predicts 2D-3D correspon-
dences, to our knowledge, SGLoc is the first work to regress
3D-3D point correspondences. Though both DSAC++ and
our SGLoc use regression, we address different problems.

Figure 7. Ground truth poses in the data on the Oxford (left)
and quality-enhanced Oxford (right) dataset. The green trajectory
indicates the prespecified standard data.

Methods PNVLAD DCP PosePN PosePN+ PoseSOE PoseMinkLoc PointLoc SGLoc
Oxford 6ms 3ms 2ms 111ms 244ms 8ms 625ms 38ms
NCLT 6ms 3ms 2ms 108ms 230ms 8ms 614ms 75ms

Table 5. Runtime (ms) of different methods on the Oxford and
NCLT datasets.

We summarize the differences. (1) SGLoc learns rigid trans-
formations instead of affine transformations that require the
intrinsics of the query camera; (2) Our methods’ ground
truth correspondences generation requires only input point
clouds and poses, which can be deployed efficiently in online
training; (3) SGLoc can be applied to large-scale outdoor
scenes covering about 200hm2.
Difference between PQEE and point cloud registration.
We empirically find existing large-scale outdoor datasets can-
not precisely provide the same position values (bad quality)
in the same position on different days, as shown in Fig. 7.
More importantly, we find this degraded data quality can
significantly decrease the localization accuracy. We hope
this new finding can inspire researchers to work on this new
source of performance degradation. Based on this new find-
ing, we propose PQEE, which aligns and fuses standard/raw
data in LiDAR localization. It uses point cloud registra-
tion, but the purpose differs from conventional point cloud
registration.

6. Conclusion
We propose a novel regression-based framework, SGLoc,

for LiDAR localization. SGLoc is the first work to decouple
LiDAR localization into point cloud correspondences regres-
sion and pose estimation via predicted correspondences. The
core component of SGLoc is the first step, which effectively
encodes scene geometry, leading to significant performance
improvement. To achieve high accuracy in this step, we
propose the TSFA module and IGCC loss to improve the
encoding of scene geometry. Moreover, to increase the data
quality and localization accuracy, the PQEE method is de-
signed to measure and correct the ground truth pose errors in
the localization data. Extensive experimental results verify
the great effectiveness of our method.
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