
ResQ: A Residual Q Function-based Approach for
Multi-Agent Reinforcement Learning Value

Factorization

Siqi SHEN†, Mengwei Qiu†, Jun Liu†, Weiquan Liu†, Yongquan Fu‡∗, Xinwang Liu‡, Cheng Wang†
†Fujian Key Lab of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, China

‡School of Computer, National University of Defense Technology, China
{siqishen,wqliu,cwang}@xmu.edu.cn, {yongquanf,xinwangliu}@nudt.edu.cn

{mengweiqiu,junliu}@stu.xmu.edu.cn

Abstract

The factorization of state-action value functions for Multi-Agent Reinforcement
Learning (MARL) is important. Existing studies are limited by their representation
capability, sample efficiency, and approximation error. To address these challenges,
we propose, ResQ, a MARL value function factorization method, which can find the
optimal joint policy for any state-action value function through residual functions.
ResQ masks some state-action value pairs from a joint state-action value function,
which is transformed as the sum of a main function and a residual function. ResQ
can be used with mean-value and stochastic-value RL. We theoretically show that
ResQ can satisfy both the individual global max (IGM) and the distributional IGM
principle without representation limitations. Through experiments on matrix games,
the predator-prey, and StarCraft benchmarks, we show that ResQ can obtain better
results than multiple expected/stochastic value factorization methods.

1 Introduction

Many real-world tasks involve multiple agents acting together, such as robot control [1]. Such tasks
can be modelled as Multi-Agent Reinforcement Learning (MARL) problems where a group of agents
must cooperate to achieve a common goal. MARL has attracted great research interest because of
its social and economic impact. However, MARL is highly stochastic and hard to learn due to the
partial-observability [2] and changing policies of agents. To address these issues, many approaches
adopt the Centralized Training with Decentralized Execution paradigm (CTDE) [3].

In the CTDE paradigm, value factorization approaches [4] are widely adopted due to their remarkable
performance and sample efficiency. A joint state-action value function is factorized into per-agent
utilities Qi, and each agent i acts greedily according to Qi. To enable effective CTDE, it is critical
to ensure the Individual-Global-Max (IGM) principle [5] that the optimal joint action should be
equivalent to the collection of each agent’s greedy actions. VDN [6] and QMIX [4] are two popular
value factorization methods, which satisfy the IGM principle.

Most value factorization approaches focus on the deterministic state-action value functions. Albeit
MARL is highly stochastic, the full distribution of per-agent utilities and the multi-agent system
are overlooked and represented only as expected value of the full distribution. Such distributional
information could be beneficial for policy learning. DMIX and DDN [7] extend QMIX and VDN with
distributional RL. They can factorize stochastic joint state-action value pairs into stochastic per-agent
utilities, and satisfy the distributional individual-global-max(DIGM) principle [7]. However, because

∗Corresponding author

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Figure 1: Motivating Example of ResQ. The reward (state-action value function) of a one-step game, denoted as
Qjt(u1, u2). The game consists of two agents; each has three actions (A, B, and C). The optimal policy is to
choose action A for both two agents. This is a non-monotonic matrix. If agent 1 chooses action A, the reward
vector for agent 2 becomes [8, -12, -12]. It monotonically increases from the right to the left. If agent 1 chooses
action B/C, the rewards ([-12, 0, 0] and [-12, 0, 7.9]) for agent 2 monotonically increase from the left to the right.
The direction of increment is different between the first and the second/third action.

of the representation limitations of QMIX and VDN, DMIX and DDN cannot factorize distributional
value functions whose mean value is non-monotonic.

To address the representation limitations, QTRAN [5], WQMIX [8], and QPLEX [9] have been pro-
posed. However, QTRAN and QPLEX are sample-inefficient, and WQMIX has high approximation
errors to non-optimal actions. These methods may lead to incorrect estimations of optimal values.
Moreover, they satisfy only the IGM principle. Achieving the IGM and the DIGM principles without
representation limitations remains an open challenge.

We address these challenges through, ResQ, a residual Q function-based approach. Given a hard-to-
factorize joint state-action value function Qjt (e.g., shown in Fig. 1), the key insight of our work
is described as follows. We could obtain an easy-to-factorize state-action value function, the main
function Qtot, if we can mask out some state-action value pairs from Qjt. If the main function
Qtot shares the same optimal policy with Qjt, then we can obtain the optimal policy of Qjt through
the factorization of Qtot by just using some simple mixers (e.g., [6]). After the masking, Qjt is
divided into two value functions: a main function Qtot and a residual function Qr. Qr are the masked
state-action value pairs from Qjt.

Besides mean-value RL (e.g., Qjt), the idea of ResQ can be used with distributional RL [10] as well.
ResQ can factorize stochastic joint state-action value functions Zjt into per-agent stochastic utilities
Zi with a mask and a residual function Zr. We have shown that ResQ satisfies both the IGM and the
DIGM principles without representation limitations.

For evaluation, we conduct extensive experiments on one-step matrix games, the StarCraft II MARL
tasks [11], and predator-prey tasks. The experimental results show that ResQ can obtain better results
than multiple competitive value factorization methods, and the ablation study shows that through the
use of residual functions for multiple factorization methods, ResQ can improve the performance of
these methods. The source code of ResQ can be visited at https://github.com/xmu-rl-3dv/ResQ.

2 Background

2.1 Dec-POMDPs

We consider cooperative Multi-Agent Reinforcement Learning (MARL) scenarios which can be
modelled as Decentralized Partially Observable Markov Decision Processes (Dec-POMDPs) [12]
defined as G for n agents. G = 〈S, {Ui}ni=1, P, r, {Oi}ni=1, {σi}ni=1, n, γ〉. S denotes the set of
states and Ui the set of actions available to agent i and we consider discrete actions only. A joint
action of all agents is defined as ut ∈ UN := U1 × . . . × Un. At a discrete time step t and state
st, after the joint action is issued, the next state st+1 ∈ S of the environment is drawn from the
transition function st+1 ∼ P (·|st,ut). All the agents receive a reward rt after the state transition
happens. It is a partially observable environment that agent i observes a part of the environment
oti ∈ Oi which is drawn from oti ∼ σi(·|st). γ is the discount factor. Each agent i maintains an

2

https://github.com/xmu-rl-3dv/ResQ


action-observation history τi = (Oi × Ui)
∗1, and acts according to policy πi(ui|τi). We denote

τ ∈ T N := τ1 × . . . × τn as the joint-observation history. The learning objective is to find the
optimal policy π =< π1, ..., πn >.

2.2 Value Function Factorization

The Individual-Global-Max (IGM) principle proposed in [5] is important to realize the factorization
of MARL state-action value function. It is defined as follows.
Definition 1 (IGM). For a joint state-action value functionQjt : T N×UN 7→ R, where τ ∈ T N is a
joint action-observation history, if there exist individual state-action functions [Qi : Ti×Ui 7→ R]Ni=1,
such that the following conditions are satisfied

arg max
u

Qjt(τ ,u) = (arg max
u1

Q1(τ1, u1), . . . , arg max
un

Qn(τn, un)), (1)

then, [Qi] satisfy IGM for Qjt under τ . We can state that Qjt(τ ,u) is factorized by [Qi(τi, ui)]
N
i=1.

In this work, we assume the argmax operator is unique, the action with smallest index is selected to
break ties if a tie exists

QMIX is a widely used monotonically increasing mixer function which proposes the following
sufficient conditions for IGM:

(Monotonicity) ∂Qjt(τ ,u)/∂Qi(τi, ui) ≥ 0, ∀i ∈ N . (2)

There are tasks whose joint state-action value function cannot be expressed well by monotonic
increasing conditions, as shown in Fig. 1.

2.3 Distributional RL

Distributional RL models the stochastic return of state-action pair through Z(τ ,u) explicitly. They
models full return distribution Z(τ ,u) instead of Q(τ ,u). The distribution of return can be ap-
proximated through a categorical distribution [13] or a quantile function [10]. Implicit Quantile
Function (IQN) [10] models the stochastic value function Z(τ, u) as a quantile function F−1(τ, u|w),
where F−1 is the generalized inverse cumulative distribution function (CDF), w ∈ [0, 1] is a quantile
sample. IQN defined a distributional Bellman operator, and use it to updates its Z(τ ,u). After
applying the distributional Bellman operator on Z(τ ,u), its resulting Z(τ ′,u′) remains in the same
distribution as Z(τ ,u). The loss ρwi,wj

t for temporal-difference error δwi,wj

t is defined as Huber
quantile regression loss, where wi and wj are two quantiles. During execution, the action with the
largest expected return arg maxu E[Z(τ ,u)] is chosen.

MARL is highly stochastic, and distributional RL could be used to deal with the stochasticity of
MARL. [7] proposes the Distributional Individual-Global-Max (DIGM) principle, which is defined
as follows.
Definition 2 (DIGM). Given a set of stochastic individual state-action value function [Zi(τi, ui)]

N
i=1

and a stochastic joint state-action value function Zjt(τ ,u), if the following conditions are satisfied

arg max
u

E[Zjt(τ ,u)] = (arg max
u1

E[Z1(τ1, u1)], . . . , arg max
un

E[Zn(τn, un)]), (3)

then, [Zi(τi, ui)]
N
i=1 satisfy DIGM for Zjt under τ . We can state that Zjt(τ ,u) is distributionally

factorized by [Zi(τi, ui)]
N
i=1.

3 Related Work

Value factorization approaches are widely adopted in MARL [14]. VDN [6] factorizes the value
functionQtot as the sum of per-agents’ utilityQi. QMIX [4] supports monotonic relationships among
Qi and Qtot. During execution, each agent acts greedily according to Qi. RMIX [15] learns return
distribution of each agent, and integrates risk-sensitive RL with QMIX. [7] proposes DMIX and

1* represents 0 to T, where T denotes the time step. * means that the history could be short or long. For
example, τ1 could ∈ O1

1 ×U1
1 ×O2

1 ×U2
1 and could ∈ O1

1 ×U1
1 , where the superscript represent time, and the

subscript is the index of a agent.

3



DDN, which extend QMIX and VDN with distributional RL through mean-shape decomposition.
They satisfy the DIGM principle but suffer from the representation limitation of QMIX and VDN.
They cannot model stochastic value functions whose mean-value are non-monotonic. QAtten [16]
and REFIL [17] adopt the attention mechanisms to focus on certain agents/scenarios when factorizing
value function. QRelation [18] considers the relationships among agents for value factorization.
However, they cannot represent non-monotonic value functions well.

To address the representational limitations, WQMIX [8] prioritizes the estimation of the optimal state-
action value. It assigns higher weights to the optimal joint actions when minimizing approximation
errors. WQMIX can be viewed as a special version of ResQ. It pays attention to the optimal actions
via masking out all the sub-optimal actions. The Qr of WQMIX consists of all the sub-optimal state-
action pairs, and the Qtot models only the optimal ones. However, it assigns high learning priorities
to Qtot, which puts the learning of sub-optimal state-action pairs and Qjt in trouble. Moreover, it is
difficult to assign proper weights to obtain satisfactory performance.

QTRAN [5] and QTRAN++ [19] transform the joint state-action value function Qjt into an easy-
to-factorize one through a series of linear constraints. QTRAN learns an approximated function
Qtran(τ ,u) =

∑N
i=1Qi(τi, ui) + Vjt(τ ) to approximate the optimal policy of Qjt. They can be

viewed as usingQtot =
∑N

i=1Qi(τi, ui) to model the optimal actions, and constrainingQtran ≥ Qjt

for sub-optimal actions. QTRAN use soft constraints (MSE losses) to implement IGM which could
lead to the violation of IGM.

RQN [20] extends QTRAN by adding an individual correction factor for each utility function to
compute an adjusted utility function. RQN can be viewed as a special case of ResQ. It uses the sum
of per-agent utility as the main function Qtot, and the sum of individual correction factors as the
residual function Qr.

QPlex decomposes Qjt as the sum of a value function Vtot and a non-positive advantage function
Atot. The role of Atot is similar to the main function Qtot used in ResQ. QPlex obtains agents’
policies from the factorization of Atot, which must be ≤ 0, but ResQ does not have such restrictions.
Although QPlex does not suffer from representation limitation issues, it may struggle to learn a good
policy in complex tasks [8].

MAVEN [21] deals with the inefficient exploration problem in MARL. Inefficient exploration
problems could interact with the representation limitation problems. It adopts QMIX as its value
factorization method. CDS [22] improves the effective cooperation of agents with efficient exploration.
Different from them, ResQ focus on value factorization, and can be used in MAVEN and CDS.

COMNet [23], DIAL [24], and GraphComm [25] study communication among agents. DCG [26]
uses graphs for coordination. COPA [27] and NDQ [28] factorize the value function with communi-
cation. The communication method adopted by them could be used with ResQ to improve MARL
performance. There exist various MARL actor-critic methods, such as MADDPG [29], MAAC [30],
and COMA [31]. ResQ is a value-based method. Other methods exist. For example, MAPPO [32]
combines MARL with PPO [33]. UPDeT [34] proposes a MARL policy decoupling method. ResQ is
orthogonal to them.

4 Method

Motivating Example Fig. 1 shows an example of a non-monotonic payoff matrix, which is hard-
to-factorized. Agent 1 has different action-value orderings, which depend on the action of Agent
2. Moreover, the second-best state-action value 7.9 is only slightly lower than the optimal value 8,
which causes difficulties for methods with representation limitations or overestimations.

Given a hard-to-factorize state-action value function Qjt, the key insight to ResQ is that if we can
mask out some state-action value pairs from Qjt, then we could obtain an easy-to-factorize value
function Qtot. As shown in Fig. 1, if we mask out those action value pairs colored in red, then the
main function Qtot can be factorized easily by mixers such as QAtten or QMIX. ResQ seeks to find a
mask w, a main functions Qtot, and a residual function Qr which satisfy the following equation.

Qjt(τ ,u) = wtot(τ ,u)Qtot(τ ,u) + wr(τ ,u)Qr(τ ,u) (4)

where masks wtot(τ ,u), wr(τ ,u) ∈ {0, 1}. The main Qtot shares the same greedy optimal policy
as Qjt. Qtot(τ ,u) is factorized into per-agent utilities Qi, and each agent selects its action greedily

4



with respect to Qi. There are many possibilities to construct the masks wtot and wr, in this work, we
set wtot to be constant 1, and focus on wr.

We describe how ResQ factorizes an expected-value joint state-action value function Qjt into per-
agent utilities in Sec. 4.1, and how ResQ decomposes a stochastic joint state-action value function
Zjt into stochastic individual utilities in Sec. 4.2.

4.1 Residual Q

For a given joint action-observation history τ , consider a factorizable joint state-action value function
Qjt(τ ,u) that can be expressed in the form as (5). Let ūi = arg maxui Qi(τi, ui), ū = [ūi]

N
i=1,

Theorem 1 states the sufficient conditions for state-action value functions [Qi(τi, ui)]
N
i=1 that satisfy

the IGM principle for Qjt.
Theorem 1. A joint state-action function

Qjt(τ ,u) = Qtot(τ ,u) + wr(τ ,u)Qr(τ ,u) (5)

is factorized by [Qi(τi, ui)]
N
i=1, if Qr(τ ,u) ≤ 0, Qtot(τ ,u) and [Qi(τi, ui)]

N
i=1 satisfy the

monotonicity conditions (2), and

wr(τ ,u) =

{
0 u = ū, (6a)
1 u 6= ū, (6b)

The proof of Theorem 1 is shown in the appendix. In Theorem 1, we have shown that for any
factorizable value function Qjt that can be expressed as (5), we can find a main function Qtot that
shares the same optimal policy as Qjt. In Theorem 2, we show that for any joint state-action value
function Q, we can find a joint state-action value function Qjt that can be expressed as (5), and it has
the same optimal policy as Q.
Theorem 2. For any joint state-action function Q(τ ,u), we can find Qjt(τ ,u) = Qtot(τ ,u) +
wr(τ ,u)Qr(τ ,u) that

ū = arg max
u

Q(τ ,u) = arg max
u

Qjt(τ ,u) (7)

Q(τ ,u) = Qjt(τ ,u) ∀u 6= ū (8)

Qtot(τ ,u) monotonically increases with [Qi(τi, ui)]
N
i=1, wr(τ ,u) satisfies (6), and Qr(τ ,u) ≤ 0.

The proof of Theorem 2 and other theorems are provided in the appendix. From Theorem 2, for any
joint state-action function Q(τ ,u), we can find Qjt(τ ,u) that shares the same optimal policy as Q.
Moreover, Qjt can be expressed as (5). Combining Theorem 1 and 2, for any Q(τ ,u), we can find
[Qi(τi, ui)]

N
i=1 satisfy the IGM principle for Q(τ ,u) through a residual function Qr(τ ,u) ≤ 0, a

main function Qtot(τ ,u), and a mask function wr(τ ,u) ∈ {0, 1}. The policies [Qi(τi, ui)]
N
i=1 can

be obtained through factorizing Qtot(τ ,u) using mixers such as QMIX [4]. Furthermore, Formula
(8) in Theorem 2 shows that Qjt(τ ,u) can track Q(τ ,u) closely ∀u 6= ū. Thus, ResQ can model Q
values precisely.

4.2 Distributional Residual Q

One promising way to deal with the MARL stochasticity is to model the return of state-action pairs
as distributional values [10]. Researchers [7] have proposed a distributional MARL approach that
satisfies the DIGM principle. However, it cannot model stochastic joint value functions whose
value-expectation are non-monotonic. ResQ can address this issue through using Zdmix(τ ,u) as the
main function and Zr as the residual function, where Zdmix(τ ,u) is the factorization function of
DMIX or DDN [7], and Zdmix, Zr are both stochastic value functions. Formula (9) in Theorem ??
describes how Zjt is decomposed.
Theorem 3. A stochastic joint state-action function

Zjt(τ ,u) = Zdmix(τ ,u) + wr(τ ,u)Zr(τ ,u) (9)

is factorized by [Zi(τi, ui)]
N
i=1, if Zr(τ ,u) ≤ 0 and wr(τ ,u) = 0 when u = ū, otherwise

1. ūi = arg maxui E[Zi(τi, ui)] , ū = [ūi]
N
i=1, Zdmix(τ ,u) = Zmean(τ ,u) + Zshape(τ ,u),

E[Zshape(τ ,u)] = 0, Qi = E[Zi(τi, ui)]. Zmean(τ ,u) is a monotonic increasing function with
respect to Qi.

5



Figure 2: The architecture of ResQ. (a): the main and the residual function, (b): agent utility, (c): stochastic
agent utility

where Zmean(τ ,u) models the mean of Zdmix. In DMIX [7], it is implemented using QMIX, and
in DDN, it is implemented as VDN. Zshape models the variation of Zdmix. Theorem 3 shows that
ResQ can remove the representation limitations of DMIX.

Besides freeing [7] from representation limitations, ResQ can factorize a stochastic value function
Zjt into individual stochastic utilities Zi with a linear main function Ztot, a residual function Zr, and
a mask function wr. Theorem 4 states the sufficient condition for [Zi(τi, ui)]

N
i=1 satify the DIGM

principle.

Theorem 4. A stochastic joint state-action function

Zjt(τ ,u) = Ztot(τ ,u) + wr(τ ,u)Zr(τ ,u) (10)

is factorized by [Zi(τi, ui)]
N
i=1, if Zr(τ ,u) ≤ 0, Ztot(τ ,u) =

∑N
i=1 kiZi(τi, ui) ki ≥ 0 and

wr(τ ,u) = 0 when u = ū, otherwise 1, where ū = [ūi]
N
i=1 ūi = arg maxui

E[Zi(τi, ui)].

The proofs of Theorem 3 and 4 are provided in the appendix. Theorem 4 states that ResQ can
find individual stochastic utilities satisfying the DIGM principle for Zjt. And it does not limit the
representation capacity of stochastic joint state-action function Zjt.

In (10), the main function Ztot is a positive weighted sum of Zi instead of a monotonic mixing
individual utilities as in (5). This is because not all monotonic increasing functions can be used as the
main function. Some monotonic increasing function (e.g., Ztot =

∑N
i=1 Z

2
i ) could lead to incorrect

estimation of the optimal actions (please refer to the Appendix for an example), they cannot satisfy
the DIGM principle.

4.3 Neural Networks

For any state-action value function Qjt, if we can construct the main function Qtot, the mask wr,
and the residual function Qr as (5), then we can recover the optimal policy for Qjt. Similarly, for
stochastic function Zjt, we can recover the optimal actions for Zjt through the main function Ztot,
the residual function Zr and the mask as (10). The neural network of ResQ is depicted in Fig. 2.

Main Function For Qjt, Qtot(τ ,u) can be any monotonically increasing function. The most well
known monotonic increasing function of per-agent utility [Qi]

N
i=1 are QMIX, VDN, and QAtten. In

default, ResQ uses QMIX asQtot. For the stochastic case, the stochastic main functionZtot(τ ,u) can
be a positive weighted sum of individual utilities Zi(τi, ui). Ztot(τ ,u) =

∑N
i=1 kiZi(τi, ui) ki ≥ 0.

Specifically, we model ki by the attention mechanism [16].

Residual Function The residual function Qr(τ ,u) is a feed-forward network that takes action-
observation history τ , agents’ utilities Qi, and action [ui]

N
i=1 as input. Unlike Qtot, Qr is not

constrained to be monotonic or positive weighted-sum of utilities, thus allowing it to model a larger
class of functions. For [Qi]

N
i=1, Qr is a simple feed-forward network which takes [Qi]

N
i=1 as inputs,

and the negative absolute function is the activation function of the last neural network layer to ensure
Qr ≤ 0. For the stochastic case, the residual function Zr is modeled as −|

∑N
i=1 wiZi|.

6



Table 1: Studied Algorithms
Value type Algorithms

Expected value ResQ, QMIX [4], CW QMIX [8], OW QMIX [8], REFILL [17],
QTran [5], QPlex [9], QAtten [16], VDN [6]

Stochastic value ResZ, DAtten, DMIX [7], DDN [7]

Mask Function The mask wr(τ ,u) requires knowing the maximal joint actions for the joint state-
action value function. However, it is intractable to obtain the optimal actions without searching over
the entire action space. For practical implementation, we use approximation, and wr is defined as
follows.

wr(τ ,u) =

{
0 u = ũ (11a)
1 u 6= ũ (11b)

where ũ = arg maxuQtot(τ, u) for the expectation case. For the stochastic case, ũ =
arg maxu E[Ztot(τ ,u)].

Loss For the expected-value case, the loss L of ResQ consists of two temporal-difference losses: L∗

and Ljt. L = L∗ + Ljt. L∗ =
∑b

k=1(yk −Qjt(τ
k, uk, θ))2, where yk = r + γQjt(τ

k+1, ũ, θ−),
ũ = [ũi]

N
i=1, ũi = arg maxQi(τ

k+1
i , ui). θ− are the parameters of a target network. Ljt measure

the distance between Qjt and Qtot + wrQr. It is defined as Ljt =
∑

(Qjt −Qtot − wrQr)2. For
the distributional case, L = Lz∗ + Lzjt. Lz∗ and Lzjt are similar to L∗ and Ljt, respectively. Lz∗

and Lzjt use the pair-wise sampled temporal difference error instead of the standard temporal error,
and the Huber quantile regression loss [10] rather than the mean square error loss.

5 Evaluation

We evaluate the performance of ResQ on one-step matrix games, the StarCraft II Multi-Agent
Challenge benchmark (SMAC) [11], and predator-prey with multiple algorithms. The experimental
results show that ResQ can obtain better results than state-of-the-art methods, and it satisfies both
the IGM and DIGM principle together without representation limitation. The ablation study shows
that ResQ can improve the performance of multiple value factorization methods through using the
residual function. Please refer to the appendix for detailed setup and more results.

5.1 Experimental Setup

The studied algorithms are listed in Table 1. ResZ is the distributional version of ResQ factorized
according to (10). DAtten, designed by us, integrates distributional RL [10] and the attention
mechanism. Other algorithms are configured with their default parameters, and the number of rollouts
is one. Each experiment is repeated at least 5 times with different seeds. The configuration of ResQ
follows WQMIX [8].

5.2 Matrix Game

We study the representation power of multiple methods for a matrix game (depicted in Fig. 1 and
Table 2). All the algorithms are ran through a full exploration ε = 1 for ε-greedy conducted over
50,000 steps. This setting guarantees the exploration of all possible actions.

Table 2 depicts the Qjt of multiple methods. As it is observed in the table, only ResQ/ResZ, QTran,
and CW QMIX can obtain the optimal policy, DMIX, DDN, and QPlex learn the second-best policy,
and OW QMIX learns a wrong policy. Albeit CW QMIX can find the optimal action, its learned Qjt

has a high approximation error, as it focuses on the optimal actions only. The detailed factorization
results are depictd in Table ?? in the appendix. Further, we modify the matrix into a distributional
matrix by adding a nomral distribution (mean = 0, std=1) value into all action-value. The payoff
matrix and the reconstructed Q values are shown in Table 3 in the appendix. We find that ResQ/ResZ
and QTran can find the optimal policy while most of the algorithms cannot. These results demonstrate
the ability of ResQ to factorize difficult state-action value functions with low approximation errors
without representation limitations.

7



Table 2: Payoff matrix of a one-step matrix game and reconstructed value function to approximate the optimal
policy. Boldface means greedy actions. Red color indicates wrongly estimated optimal actions, whereas blue
color represents the opposite.

u1

u2 A B C

A 8 -12 -12
B -12 0 0
C -12 0 7.9

(a) Game Payoff matrix.

Q1

Q2 0.108 (A) -0.300 (B) 0.106 (C)

0.108(A) 8.03 -12.00 -11.99
-0.300(B) -12.00 0.00 0.00
0.106(C) -12.00 0.00 7.87

(b) ResQ: Q1, Q2, Qjt

Z1

Z2 0.82(A) -0.77(B) 0.77(C)

0.82(A) 7.96 -12.37 -12.37
-0.77(B) -12.13 -0.27 -0.38
0.77(C) -12.22 -0.27 7.86

(c) ResZ: E[Ztot],E[Z1],E[Z2]

Q1

Q2 -6.07(A) -0.07(B) 0.04(C)

-6.09(A) -10.88 -9.99 -9.93
-0.07(B) -9.92 -0.20 0.16
0.04(C) -9.85 0.15 7.81

(d) DMIX: Q1, Q2, Qjt

Q1

Q2 -6.70(A) -0.23(B) 1.45(C)

-6.70(A) -13.40 -6.94 -5.25
–0.24(B) -6.93 -0.47 1.22
1.45(C) -5.25 1.22 2.91

(e) DDN: Q1, Q2, Qjt

Q1

Q2 3.48(A) 0.15(B) 3.46(C)

3.27(A) 8.00 4.67 7.98
0.15(B) 4.88 1.55 4.86
3.26(C) 7.99 4.65 7.97

(f) QTran: Q1, Q2, Qjt

Q1

Q2 0.07(A) -150(B) 0.08(C)

0.07(A) 15.7 -3.72 0.34
-150(B) -2.62 12.66 12.65
0.08(C) -1.20 12.44 15.83

(g) QPlex: Q1, Q2, Qjt

Q1

Q2 0.17(A) -25.72(B) -25.74(C)

0.17(A) 8.00 -5.04 -5.04
-24.55(B) -5.04 -5.04 -5.04
-24.55(C) -5.04 -5.04 -5.04

(h) CW QMIX: Q1, Q2, Qjt

Q1

Q2 -0.03(A) -50.79(B) 0.26(C)

0.22(A) 6.07 -0.87 6.86
-50.32(B) -0.86 -0.87 -0.16
0.04(C) 5.49 -0.87 6.29

(i) OW QMIX: Q1, Q2, Qjt

Figure 3: The Test Win Rate of the SMAC benchmarks. The horizontal axis shows the training time step.

5.3 StarCraft II Multi-Agent Challenge (SMAC)

In SMAC [11], two teams of agents fight against each other. For the SMAC tasks, we train each
algorithm for 1 to 2 million steps, and for every 10,000 steps, the learned policies are evaluated. The
test win rate, which measures the average win ratio of the agents controlled by MARL algorithms for
each 32 test episodes, is reported.

As shown in Figure 3 (a), ResQ and ResZ achieve the best performance, and QMIX has the third-best
results in the MMM2 scenario. The performance improvement over QMIX comes from the fact that
ResQ/ResZ can model better the non-monotonic state-action function of the MMM2 scenario. For
the MMM scenario, ResQ/ResZ has the best test win rate.

8



Figure 4: The return of Predator Prey with punishment: p = 0 (Left), p = −2 (Middle) and p = −4 (Right).

The results for the 3s_vs_5z tasks are depicted in Fig. 3 (c). ResQ can obtain close-to-optimal
performance after 1 million steps, while others cannot. For the bane_vs_bane scenario, in Fig. 3 (d),
ResQ and ResZ can learn the optimal policy in less than 0.2 million steps, while the other methods
cannot. The results indicate that through masking state-action value pair from Qjt/Zjt, ResQ/ResZ
can learn the optimal policy in short time, and the performance is stable. Albeit QPlex and DMIX
can obtain close-to-optimal performance at a much later time, but their performance is unstable. The
results for CW/OW QMIX for bane_vs_bane and 27m_vs_30m are not shown due to out-of-memory
error on an NVIDIA Geforce RTX 3090 GPU.

ResQ/ResZ can obtain the close-to-optimal performance after 0.25 million steps in the 2s_vs_1sc
scenario, shown in Fig. 3 (e). Although the other methods can learn close-to-optimal policy with
more training steps, their performance is not stable. For the 1c3s5z scenario, depicted in Figure 2 (f),
ResQ/ResZ are among the best-performing algorithms.

In the 2c_vs_64zg scenario, 2 Colossi agents fights against 64 enemy agents. It has a large action
space, and the reward of each action varies rather than is constant as in other scenarios. As it is
depicted in Fig. 3 (g), ResZ can obtain the best performance. This indicates ResZ’s ability to model
distributional reward. The results for 8m_vs_9m and 27m_vs_30m are depicted in Fig. 3 (h) and (f),
respectively. ResQ and ResZ are the second-best performing algorithms. DMIX is good at scenarios
which consist of homogeneous agents (e.g., 8m_vs_9m), but it under-performs for scenarios with
heterogeneous agents (e.g., MMM2, 3s_vs_5z), where agent interactions are complex.

5.4 Predator Prey

In the predator prey environment [26], 8 agents hunt 8 preys in a 10× 10 grid world. Each agent has
6 actions: moves in either 4 directions, stands still, and catches prey. If two adjacent agents execute
simultaneously the catch action to a nearby prey, a reward r = 10 is given to the agents, but a failed
catch by a single agent is punished by a reward p ≤ 0. The more negative p is, the higher level of
coordination is needed for the agents. Following [8], the ε of the ε-greedy strategy for QPlex, ResQ,
and CW/OW QMIX is gradually annealed from 1 to 0.05 within 1 million steps.

The test return for three punishments: p = 0, p = −2, and p = −4 are shown in Fig. 4. For the
most easy scenario p = 0, ResQ, QMIX, and QPlex can learn the optimal policies quickly. The
performance of CW/OW QMIX drops in the middle of training. For the difficult p = −2 case,
ResQ can obtain the best returns. CW QMIX and OW QMIX have the second and third best scores.
QTRAN and QMIX can not obtain any positive returns. For p = −4, ResQ can obtain the best returns
in the end. These results indicate ResQ’s ability for challenging cooperation scenarios.

5.5 Ablation Study

We study the impact of different implementations for the main function and the residual function,
and Starcraft versions on the SMAC benchmark. We find that ResQ can improve the performance of
multiple value factorization approaches through the use of the residual function Qr.

Main Functions In SMAC, QMIX is used as the implementation of Qtot. For ResQ, the results
of using QMIX, QAtten, and VDN as the main function Qtot are depicted as ResQ, Qtot-QAtten,
Qtot-VDN in Fig. 5 (a) and (b). As it is shown, for the MMM2 and 8m_vs_9m scenarios, ResQ, Qtot-
QAtten, and Qtot-VDN perform better than QMIX, QAtten, and VDN, respectively. This indicates
that ResQ can improve the performance of value factorization approaches (the main function) through
the use of residual functions and mask. Moreover, we find that QMIX is the preferred main function
for the SMAC benchmark.

9



Figure 5: Impacts of the main functions (a), (b), (c), the residual functions (d) (e), and StarCraft versions (f)

For the distributional case, shown in Fig. 5 (c). The results of using DAtten, DDN, and DMIX as
the main function Ztot are depicted as ResZ, Ztot-DDN, and Ztot-DMIX. DAtten is designed by us;
it integrates IQN [10] with QAtten. ResZ, Ztot-DDN, and Ztot-DMIX perform better than DAtten,
DDN, and DMIX, respectively. This indicates that ResZ can improve the performance of stochastic
value factorization methods through residual functions.

Residual Functions The results of using different mixers (factorization methods) for the residual
functions are shown in the Fig. 5 (d) and (e). The performance of using a feed-forward network
(FF) as Qr (denoted as ResQ) is similar to that of using advanced mixers such as QMIX (Qr-QMIX)
and VDN (Qr-VDN), and higher than that of QAtten (Qr-QAtten). In ResQ, we do not restrict the
function classes of Qr. This suggests that using a simple feed-forward network may be sufficient
for Qr. For the distributional case, the performance of using DAtten, FF, DDN, DMIX is depicted
as ResZ, Zr-FF, Zr-DDN, Zr-DMIX. As it is depicted in Fig. 5 (e), we find that using DAtten as the
residual function Zr is preferred.

The Starcraft II version used in this work is SC2.4.6.2.69232 (2.4.6 for short), which is the same
version used as QMIX [4] and WQMIX [8]. Some methods (e.g.,[7]) uses the version SC2.4.10.
We compare ResQ with Pymarl2_QMIX [14], which is a fine-tuned QMIX, across two versions.
Figure 5 (f) depicts the results for different methods. The version of StarCraft is written inside the
parentheses after the name of each method. For example, ResQ (2.4.6) denotes runing ResQ against
SC2.4.6. As it is shows that ResQ/ResZ perform better than QMIX and Pymarl2_QMIX for both two
versions in the MMM2 scenario. As Pymarl2_QMIX performs better than most algorithms in most
case for SC2.4.10 [14], this suggests that ResQ/ResZ may perform better than other algorithms in
SC2.4.10.

6 Conclusion

In this work, we propose, ResQ, a residual function-based approach for Multi-Agent Reinforcement
Learning (MARL) value function factorization. ResQ recovers the optimal policy for any joint
state-action value function by masking out state-action value pairs from the value function. We show
that ResQ can satisfy the individual-global-max (IGM) principle and the distributional IGM principle
without representation limitations. Through extensive experiments on multiple MARL tasks, we
show that ResQ can obtain promising results.

Acknowledgement This work was partially supported by the National Natural Science Foundation
of China (61872376, 61972409), by open fund of PDL (WDZC20215250113), by the China Post-
doctoral Science Foundation (No.2021M690094); the FuXiaQuan National Independent Innovation
Demonstration Zone Collaborative Innovation Platform (No.3502ZCQXT2021003).

References
[1] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. Is multiagent deep reinforcement

learning the answer or the question? A brief survey. CoRR, abs/1810.05587, 2018.

10



[2] Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P. How, and John Vian. Deep
decentralized multi-task multi-agent reinforcement learning under partial observability. In
ICML, pages 2681–2690, 2017.

[3] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos A. Vlassis. Optimal and approximate
q-value functions for decentralized pomdps. J. Artif. Intell. Res., 32:289–353, 2008.

[4] Tabish Rashid, Mikayel Samvelyan, Christian Schröder de Witt, Gregory Farquhar, Jakob N.
Foerster, and Shimon Whiteson. QMIX: monotonic value function factorisation for deep
multi-agent reinforcement learning. In ICML, 2018.

[5] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Hostallero, and Yung Yi. QTRAN:
learning to factorize with transformation for cooperative multi-agent reinforcement learning. In
ICML, 2019.

[6] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinícius Flores
Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls, and
Thore Graepel. Value-decomposition networks for cooperative multi-agent learning based on
team reward. In AAMAS, 2018.

[7] Wei-Fang Sun, Cheng-Kuang Lee, and Chun-Yi Lee. DFAC framework: Factorizing the value
function via quantile mixture for multi-agent distributional q-learning. In ICML, 2021.

[8] Tabish Rashid, Gregory Farquhar, Bei Peng, and Shimon Whiteson. Weighted QMIX: expanding
monotonic value function factorisation for deep multi-agent reinforcement learning. In NeurIPS,
2020.

[9] Jianhao Wang, Zhizhou Ren, Terry Liu, Yang Yu, and Chongjie Zhang. QPLEX: duplex dueling
multi-agent q-learning. In ICLR, 2021.

[10] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In Jennifer G. Dy and Andreas Krause, editors, ICML,
volume 80, pages 1104–1113, 2018.

[11] Mikayel Samvelyan, Tabish Rashid, Christian Schröder de Witt, Gregory Farquhar, Nantas
Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philip H. S. Torr, Jakob N. Foerster, and Shimon
Whiteson. The starcraft multi-agent challenge. In AAMAS, pages 2186–2188, 2019.

[12] Frans A. Oliehoek and Christopher Amato. A Concise Introduction to Decentralized POMDPs.
Springer Briefs in Intelligent Systems. 2016.

[13] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In Doina Precup and Yee Whye Teh, editors, ICML, volume 70, pages 449–458,
2017.

[14] Jian Hu, Siyang Jiang, Seth Austin Harding, Haibin Wu, and Shih-wei Liao. Rethinking the
implementation tricks and monotonicity constraint in cooperative multi-agent reinforcement
learning, 2021.

[15] Wei Qiu, Xinrun Wang, Runsheng Yu, Rundong Wang, Xu He, Bo An, Svetlana Obraztsova,
and Zinovi Rabinovich. RMIX: learning risk-sensitive policies for cooperative reinforcement
learning agents. In NeurIPS, pages 23049–23062, 2021.

[16] Yaodong Yang, Jianye Hao, Ben Liao, Kun Shao, Guangyong Chen, Wulong Liu, and Hongyao
Tang. Qatten: A general framework for cooperative multiagent reinforcement learning. CoRR,
abs/2002.03939, 2020.

[17] Shariq Iqbal, Christian A. Schröder de Witt, Bei Peng, Wendelin Boehmer, Shimon Whiteson,
and Fei Sha. Randomized entity-wise factorization for multi-agent reinforcement learning. In
ICML, 2021.

[18] Siqi Shen, Jun Liu, Mengwei Qiu, Weiquan Liu, Cheng Wang, Yongquan Fu, Qinglin Wang,
and Peng Qiao. Qrelation: an agent relation-based approach for multi-agent reinforcement
learning value function factorization. In ICASSP, 2022.

11



[19] Kyunghwan Son, Sungsoo Ahn, Roben Delos Reyes, Jinwoo Shin, and Yung Yi. Qtran++:
Improved value transformation for cooperative multi-agent reinforcement learning, 2020.

[20] Rafael Pina, Varuna De Silva, Joosep Hook, and Ahmet Kondoz. Residual q-networks for value
function factorizing in multi-agent reinforcement learning. In CoRR, volume abs/2205.15245,
2022.

[21] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. MAVEN: multi-
agent variational exploration. In NeurIPS, pages 7611–7622, 2019.

[22] Chenghao Li, Chengjie Wu, Tonghan Wang, Jun Yang, Qianchuan Zhao, and Chongjie Zhang.
Celebrating diversity in shared multi-agent reinforcement learning. In NeurIPS, 2021.

[23] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent communication
with backpropagation. In NeurIPS, 2016.

[24] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learning to
communicate with deep multi-agent reinforcement learning. In NeurIPS, pages 2137–2145,
2016.

[25] Siqi Shen, Yongquan Fu, Huayou Su, Hengyue Pan, Peng Qiao, Yong Dou, and Cheng Wang.
Graphcomm: A graph neural network based method for multi-agent reinforcement learning. In
ICASSP, 2021.

[26] Wendelin Böhmer, Vitaly Kurin, and Shimon Whiteson. Deep coordination graphs. ICML,
2020.

[27] Bo Liu, Qiang Liu, Peter Stone, Animesh Garg, Yuke Zhu, and Anima Anandkumar. Coach-
player multi-agent reinforcement learning for dynamic team composition. In ICML, 2021.

[28] Tonghan Wang, Jianhao Wang, Chongyi Zheng, and Chongjie Zhang. Learning nearly decom-
posable value functions via communication minimization. In ICLR, 2020.

[29] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. In NeurIPS, pages 6379–6390,
2017.

[30] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learning. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, ICML, 2019.

[31] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon
Whiteson. Counterfactual multi-agent policy gradients. In AAAI, 2018.

[32] Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre M. Bayen, and Yi Wu. The
surprising effectiveness of MAPPO in cooperative, multi-agent games. CoRR, abs/2103.01955,
2021.

[33] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[34] Siyi Hu, Fengda Zhu, Xiaojun Chang, and Xiaodan Liang. Updet: Universal multi-agent
reinforcement learning via policy decoupling with transformers. In ICLR, 2021.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

12



2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] The complete proofs

are included in the appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main
experimental results (either in the supplemental material or as a URL)? [Yes] It
is provided in the supplemental material, and the code can be viewed at https:
//github.com/xmu-rl-3dv/ResQ

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] The standard errors are shown.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Each experiment is ran with a
NVIDIA 3090 GPU.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] We use some of the

code from Pymarl, Pymarl2, and DFAC
(b) Did you mention the license of the assets? [Yes] It is source code released by the

authors of papers. Their code licensed under the Apache License v2.0.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

The source code of this work is included in the supplemental material, and it will be
open-sourced.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

13

https://github.com/xmu-rl-3dv/ResQ
https://github.com/xmu-rl-3dv/ResQ

	Introduction
	Background
	Dec-POMDPs
	Value Function Factorization
	Distributional RL

	Related Work
	Method
	Residual Q
	Distributional Residual Q
	Neural Networks

	Evaluation
	Experimental Setup
	Matrix Game
	StarCraft II Multi-Agent Challenge (SMAC)
	Predator Prey
	Ablation Study

	Conclusion

