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ABSTRACT
Spatio-temporal kriging is an important problem in web and social
applications, such as Web or Internet of Things, where things (e.g.,
sensors) connected into a web often come with spatial and temporal
properties. It aims to infer knowledge for (the things at) unobserved
locations using the data from (the things at) observed locations dur-
ing a given time period of interest. This problem essentially requires
inductive learning. Once trained, the model should be able to per-
form kriging for different locations including newly given ones,
without retraining. However, it is challenging to perform accurate
kriging results because of the heterogeneous spatial relations and di-
verse temporal patterns. In this paper, we propose a novel inductive
graph representation learning model for spatio-temporal kriging.
We first encode heterogeneous spatial relations between the unob-
served and observed locations by their spatial proximity, functional
similarity, and transition probability. Based on each relation, we
accurately aggregate the information of most correlated observed
locations to produce inductive representations for the unobserved
locations, by jointly modeling their similarities and differences.
Then, we design relation-aware gated recurrent unit (GRU) net-
works to adaptively capture the temporal correlations in the gener-
ated sequence representations for each relation. Finally, we propose
a multi-relation attention mechanism to dynamically fuse the com-
plex spatio-temporal information at different time steps from mul-
tiple relations to compute the kriging output. Experimental results
on three real-world datasets show that our proposed model out-
performs state-of-the-art methods consistently, and the advantage

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’23, April 30–May 04, 2023, Austin, TX, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9416-1/23/04. . . $15.00
https://doi.org/10.1145/3543507.3583525

is more significant when there are fewer observed locations. Our
code is available at https://github.com/zhengchuanpan/INCREASE.
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1 INTRODUCTION
With recent advances in the Web of Things (WoT) [5, 18, 39], more
and more devices are collecting various types of location-based
data in cities, e.g., check-in data in location-based social networks
(LBSN) [28, 48], Internet of Things (IoT) sensor data [24, 47]. Due
to the high operating cost, the number of available devices is often
still limited and the device distribution is usually unbalanced. This
makes it difficult to offer fine-grained and high spatial-resolution
analysis using the observation data only. Spatio-temporal kriging
aims to address this data sparsity and skewed data availability
problem – using the data from observed locations to mine the
patterns or infer the knowledge for unobserved locations during a
time period of interest [37]. Despite recent developments in spatio-
temporal data mining [33, 36, 52], little attention has been paid
to the spatio-temporal kriging, which is an important problem in
web applications (see Appendix A). We expect a solution for this
problem to generate a broad impact over web-based technologies
in transport industry [9], urban planning [36], and socio-economic
system [28], as well as the web data mining [16].

There are two types of methods for spatio-temporal kriging:
transductive models and inductive ones. The transductive models,
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such as matrix/tensor completion approaches [2, 9]) require re-
training for new graph structures. Inductive models, such as graph
convolutional networks (GCN) [38] based approaches [1, 37] are able
to accommodate dynamic graph structures. Once trained, they can
perform kriging for different unobserved locations including newly
given ones without retraining. However, there still lacks a satisfac-
tory progress in the spatio-temporal kriging problem, mainly due
to the following challenges.

Challenge 1: How to accurately select most correlated locations
for each unobserved location? There exists complex relations among
different locations in LBSN. For example, in Figure 1(a), the unob-
served location𝑋 may be correlated to observed locations𝐴, 𝐵, and
𝐶 because of spatial proximity (e.g., people work at office location
𝐴may shop at a near mall𝑋 ), similar functionality (e.g., locations 𝐵
and 𝑋 are both close to shopping malls) , and transition probability
(e.g., a large crowd of people may transit from a residential area 𝐶
to shopping mall 𝑋 due to the convenient public transport), respec-
tively. Moreover, two related locations may not be highly correlated
all the time. For example, the check-in patterns at locations 𝐴 and
𝑋 may be similar at office hours but different at other hours.

Our solution: Aggregating heterogeneous spatial relations by jointly
modeling similarities and differences. We first encode heterogeneous
relations between unobserved and observed locations based on
spatial proximity, functional similarity, and transition probability
relations. Then, in each relation, we model both similarities and dif-
ferences between unobserved and observed locations, to aggregate
related locations’ information to form inductive representations for
the unobserved location.

Challenge 2: How to adaptively extract the temporal patterns for
each unobserved location? Due to the lack of historical data, it is
non-trivial to directly model the temporal correlations for unob-
served locations. Moreover, different unobserved locations may have
diverse temporal patterns, which makes this problem more challeng-
ing. For example, in Figure 1(b), the check-in pattern at location 𝑋
is relatively steady in the day time, while locations 𝑌 and 𝑍 have
morning and evening peaks, respectively.

Our solution: Modeling relational temporal correlations by intro-
ducing relation-aware gated recurrent unit (GRU) networks. We first
exploit a relation-aware input gate to adaptively control the im-
portance of the current representation, and a relation-aware forget
gate to adaptively control the influence of past states. Then, we
assemble two relation-aware gates into GRU networks to guide the
temporal information flow for the unobserved location.

Challenge 3: How to dynamically combine heterogeneous spa-
tial relations with diverse temporal patterns? The importance of
different relations may change quickly. For example, in Figure 1(a),
to estimate the check-ins of the unobserved location 𝑋 , the spatial
proximity relation (location 𝐴) may dominant during office hours,
while the transition probability relation (location 𝐶) may be more
important after office hours.

Our solution: Fusing complex spatio-temporal information by de-
signing a multi-relation attention mechanism. We first compute the
attention scores of multiple relations at different time steps. Then,
we dynamically assign different relations with different weights to
fuse the multi-relation information, and compute the final kriging
sequence for the unobserved location.

To address these challenges, overall, we propose an inductive
graph representation learning model for spatio-temporal kriging (IN-
CREASE), based on the aforementioned solutions. INCREASE con-
sists of three stages: spatial aggregation to address Challenge 1,
temporal modeling to address Challenge 2, andmulti-relation fusion
to address Challenge 3. Experimental results on three real-world
spatio-temporal datasets demonstrate that our model achieves the
best performances against five state-of-the-art competitors, and
the advantage is more significant when fewer observed locations
are available. The contributions of this paper are summarized as
follows.

• Wepropose an inductive graph representation learningmodel
named INCREASE that models heterogeneous spatial rela-
tions and diverse temporal patterns for spatio-temporal krig-
ing problems.

• We design a multi-relation attention mechanism that can
dynamically fuse complex spatio-temporal information at
different time steps from different relations to compute the
final kriging sequence.

• We evaluate the performance of our model on three real-
world datasets. The experimental results show that ourmodel
outperforms state-of-the-art competitors, especially 14.0%
on MAPE, and the advantage is more significant when there
are fewer observed locations are available.

2 RELATEDWORK
Spatio-temporal kriging falls into a broader area of spatio-temporal
data mining [33]. Recent studies using deep learning have shown
promising results in many spatio-temporal data mining problems,
such as prediction [22, 26], anomaly detection [4, 35], recommenda-
tion [3, 32], and kriging [1, 37]. We review studies on two most rel-
evant problems – spatio-temporal prediction [49] and kriging [37].

2.1 Spatio-Temporal Prediction
Spatio-temporal prediction aims to predict future status (e.g., sen-
sor readings) of a given set of locations based on their historical
observations [12, 34, 54]. Recurrent neural networks (RNN), e.g.,
long short-term memory (LSTM) and GRU networks, are commonly
used in spatio-temporal prediction tasks for modeling the temporal
dependencies [25, 29]. To model the spatial dependencies, convolu-
tional neural networks (CNN) are often used [19, 42, 46, 51]. Recent
studies formulate spatio-temporal prediction as a graph prediction
problem [23, 43, 50]. By exploiting the strong learning capability of
graph neural networks [10, 38], these graph based methods have
produced promising results [6, 15–17]. Recently, attention [11, 30]
based models have shown superior performance in spatio-temporal
prediction problems [7, 50]. A few other studies learn multiple
correlations to improve the prediction accuracy [12, 54].

While spatio-temporal prediction shares similarity with spatio-
temporal kriging in modeling the spatio-temporal correlations, it
cannot be directly applied to the spatio-temporal kriging due to no
historical data for the unobserved locations.

2.2 Spatio-Temporal Kriging
Compared to the spatio-temporal prediction, less attention has been
paid to spatio-temporal kriging. Traditional kriging methods have
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Figure 1: A motivating example. (a) Heterogeneous spatial relations: spatial proximity relation (e.g., people work at office
location 𝐴may shop at a near mall 𝑋 ), functional similarity relation (e.g., locations 𝐵 and 𝑋 are both close to shopping malls,
and they may share similar check-in patterns), and transition probability relation (e.g., a large crowd of people may transit from
a residential area 𝐶 to shopping mall 𝑋 due to the convenient public transport). (b) Diverse temporal patterns: the check-in
pattern at location 𝑋 is relatively steady in the day time, while locations 𝑌 and 𝑍 have morning and evening peaks, respectively.

a strong Gaussian assumption [8], which is quite restrictive, as the
data may not follow Gaussian distributions.

Several studies treat spatio-temporal kriging as a matrix (or
tensor) completion problem where the rows corresponding to un-
observed locations are completely missing [2, 9]. Low-rank tensor
models are developed to capture the dependencies among vari-
ables [2] or to incorporate spatial autoregressive dynamics [9].
However, matrix completion is transductive which cannot cope
with additional locations of interest without model retraining. An-
other study [40] uses graph embeddings [41] to select the most
relevant observed locations for given unobserved locations and
uses generative adversarial networks (GAN) [13] to generate esti-
mations for the unobserved locations. Since graph embedding is
transductive, this method is also transductive.

Recent studies [1, 37] make use of the inductive power of graph
convolutional networks (GCN) for inductive kriging. They construct
a graph according to the spatial distance between the (unobserved
and observed) locations and apply GCN on that graph to recover
the values of unobserved locations (nodes on the graph). However,
using the distance only may miss the correlations among distant
locations. In this work, we consider heterogeneous spatial relations
among the locations, as well as diverse temporal patterns at the
unobserved locations, to perform inductive spatio-temporal kriging.

3 SPATIO-TEMPORAL KRIGING
3.1 Problem Definition
Suppose that there are 𝑁 observed locations. We use x𝑖,𝑡 ∈ R𝐶
to represent 𝐶 types of data recorded at time step 𝑡 for the 𝑖-th
location. Given a time window of 𝑃 time steps, the data at the
𝑖-th location form a (multivariate) time series denoted as X𝑖 =

(x𝑖,1, x𝑖,2, · · · , x𝑖,𝑃 )⊤ ∈ R𝑃×𝐶 , while the data of all 𝑁 observed
locations are denoted as X = (X1,X2, · · · ,X𝑁 ) ∈ R𝑁×𝑃×𝐶 .

GivenX, spatio-temporal kriging aims to estimate the time series
of 𝑃 time steps at 𝑀 unobserved locations. We denote the set of
estimated time series as Y = (Ŷ1, Ŷ2, · · · , Ŷ𝑀 ) ∈ R𝑀×𝑃×𝐶 , where

Ŷ𝑙 = (ŷ𝑙,1, ŷ𝑙,2, · · · , ŷ𝑙,𝑃 )⊤ ∈ R𝑃×𝐶 is the estimated time series for
the unobserved location 𝑙 (𝑙 = 1, · · · , 𝑀). We provide a table of
important notations in Appendix B.

3.2 Overview
Figure 2 shows the structure of our proposed inductive graph repre-
sentation learning model for spatio-temporal kriging (INCREASE). It
consists of three stages: (1) spatial aggregation, which accurately
aggregates the information from correlated locations according to
the spatial proximity, functional similarity, and transition probabil-
ity relations; (2) temporal modeling, which adaptively models the
temporal dependencies in the generated sequence representations
for each relation; (3) multi-relation fusion, which dynamically fuses
the estimations from different relations to compute the final kriging
results. We detail the three stages next.

3.3 Spatial Aggregation
A key problem in spatio-temporal kriging is to identify the observed
locations that are closely related to an unobserved location of in-
terest. Most existing studies [1, 37] only use the spatial distance
as an indicator of location relevance, which may miss distant yet
highly correlated locations. Different from such studies, we leverage
multiple heterogeneous relations to infer location relevance.

3.3.1 Encoding heterogeneous spatial relations. We encode three
types of relations between unobserved and observed locations.

(1) Spatial-Proximity. As the spatially closed locations may share
similar data patterns [1, 37], we first use spatial distance to compute
the spatial proximity as:

𝛼
𝑟𝑆𝑃
𝑖,𝑙

= exp(−𝑑𝑖𝑠𝑡 (𝑖, 𝑙)
2

𝜖2 ) . (1)

Here, 𝑑𝑖𝑠𝑡 (𝑖, 𝑙) denotes the distance from observed location 𝑖 to
unobserved location 𝑙 , which can be Euclidean or non-Euclidean
(e.g., road network) distance based on application requirements, and
𝜖 is the standard deviation of distances among observed locations.
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Figure 2: Overall architecture of INCREASE. A typical spatio-temporal kriging task (the up left part) contains three stages: (1)
spatial aggregation stage aggregates related locations’ information to form the hidden representation of a target unobserved
location 𝑙 , by jointly modeling their similarities and differences; (2) temporal modeling stage adaptively models temporal
correlations by introducing a relation-aware GRU network for each relation; and (3)multi-relation fusion stage dynamically
fuses the representations at different time steps from heterogeneous relations to compute the final kriging sequence.

(2) Func-Similarity. Next, we consider locations correlated by
similar functionality. For example, the check-in patterns of two
shopping malls in different regions may be quite similar. To model
the functionality of a location, we use a vector of surrounding
points-of-interest (POIs), motivated by studies on region function-
ality modeling [44, 45]. We compute the functional similarity as:

𝛼
𝑟𝐹𝑆
𝑖,𝑙

= max(0, 𝑃𝑒𝑎𝑟𝑠𝑜𝑛(F𝑖 , F𝑙 )). (2)

Here, F𝑖 and F𝑙 are the POI vectors of observed location 𝑖 and un-
observed location 𝑙 , respectively. Each vector records the numbers
of surrounding POIs of different POI categories at each location.
Function 𝑃𝑒𝑎𝑟𝑠𝑜𝑛(·, ·) returns the Pearson correlation coefficient,
which is in [−1, 1], and values smaller than zero are filtered.

(3) Trans-Probability.We further consider the data flow among
the locations. For example, people may travel to a distant huge
shopping mall center by convenient public transport. We call the
relevance of locations because of the data flow as Trans-Probability
relation. To showcase the impact of such relations, we consider
crowd flows as an example and compute the data transition proba-
bility between two locations as:

𝛼
𝑟𝑇𝑃

𝑖,𝑙 ;𝑡 =
#𝑐𝑟𝑜𝑤𝑑𝑠 (𝑣𝑖 → 𝑣𝑙 |𝑡)

#𝑐𝑟𝑜𝑤𝑑𝑠 (𝑣𝑖 |𝑡)
. (3)

Here, 𝑡 refers to the 𝑡-th time step of a day, #𝑐𝑟𝑜𝑤𝑑𝑠 (𝑣𝑖 |𝑡) denotes
the crowd flows at location 𝑖 at time step 𝑡 , and #𝑐𝑟𝑜𝑤𝑑𝑠 (𝑣𝑖 → 𝑣𝑙 |𝑡)
is the crowd flows transiting from locations 𝑖 to 𝑙 at time step 𝑡 .

3.3.2 Aggregating information from correlated locations. Let R be
the set of aforementioned heterogeneous spatial relations. Next, we
aggregate the data from observed locations to estimate those for the
unobserved location 𝑙 based on each relation 𝑟 ∈ R. To reduce the
computation costs and the impact of noisy data, we use the set of

the top-𝐾 most correlated observed locations for each unobserved
location 𝑙 with respect to each relation 𝑟 ∈ R, denoted as N𝑟

𝑙
.

We first use fully-connected layers to project the data of the loca-
tions in N𝑟

𝑙
into a 𝐷-dimensional space, denoted as H𝑟 ∈ R𝐾×𝑃×𝐷 .

We aggregate the projected data to generate an inductive hidden
representation for an unobserved location 𝑙 as:

s𝑟
𝑙,𝑡

= 𝜎 (
∑︁
𝑖∈N𝑟

𝑙

𝛼𝑟
𝑖,𝑙 ;𝑡∑

𝑗∈N𝑟
𝑙
𝛼𝑟
𝑗,𝑙 ;𝑡

h𝑟𝑖,𝑡W
𝑟
𝑠 + b𝑟𝑠 ). (4)

Here, 𝛼𝑟
𝑖,𝑙 ;𝑡 refers to the location relevance uncovered by a type

of relation, i.e., 𝛼𝑟𝑆𝑃
𝑖,𝑙

, 𝛼𝑟𝐹𝑆
𝑖,𝑙

, or 𝛼𝑟𝑇𝑃

𝑖,𝑙 ;𝑡 , where 𝛼
𝑟𝑆𝑃
𝑖,𝑙

and 𝛼𝑟𝐹𝑆
𝑖,𝑙

are time-
invariant, while 𝛼𝑟𝑇𝑃

𝑖,𝑙 ;𝑡 is time-dependent; h𝑟
𝑖,𝑡

is the hidden represen-
tation of observed location 𝑖 at time step 𝑡 with respect to relation
𝑟 ; W𝑟

𝑠 ∈ R𝐷×𝐷 and b𝑟𝑠 ∈ R𝐷 are learnable parameters with respect
to relation 𝑟 ; 𝜎 (·) is a non-linear activation function, e.g., ReLu [27].
The output of the equation, s𝑟

𝑙,𝑡
, represents the hidden state of an

unobserved location 𝑙 (1 ≤ 𝑙 ≤ 𝑀) at time step 𝑡 (1 ≤ 𝑡 ≤ 𝑃 ) with
respect to relation 𝑟 , which aggregates the information from the
most correlated locations.

The hidden representation s𝑟
𝑙,𝑡

in Equation (4) mainly considers
similarities between the unobserved location 𝑙 and each observed
location 𝑖 ∈ N𝑟

𝑙
. These locations may not be always highly cor-

related, and their differences should not be ignored. To this end,
we compute the bias between the unobserved location 𝑙 and each
observed location 𝑖 ∈ N𝑟

𝑙
at each time step 𝑡 as |s𝑟

𝑙,𝑡
− h𝑟

𝑖,𝑡
|. Then,

the bias of location 𝑙 for relation 𝑟 can be formulated as:

𝛿𝑟
𝑙,𝑡

= 𝑡𝑎𝑛ℎ(
∑︁
𝑖∈N𝑟

𝑙

𝛼𝑟
𝑖,𝑙 ;𝑡∑

𝑗∈N𝑟
𝑙
𝛼𝑟
𝑗,𝑙 ;𝑡

|s𝑟
𝑙,𝑡

− h𝑟𝑖,𝑡 |W
𝑟
𝛿
+ b𝑟

𝛿
), (5)
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whereW𝑟
𝛿
and b𝑟

𝛿
are learnable parameters. For a weaker correla-

tion, the bias 𝛿𝑟
𝑙,𝑡

is larger, and we need to add a greater penalty on
s𝑟
𝑙,𝑡
. Thus, the hidden representation of the unobserved location 𝑙

at time step 𝑡 in relation 𝑟 can be adjusted as:

s̃𝑟
𝑙,𝑡

= 𝜎 (s𝑟
𝑙,𝑡
W𝑟
𝑠
+ 𝛿𝑟

𝑙,𝑡
), (6)

where W𝑟
𝑠
denotes a learnable parameter matrix. Equation (6) cap-

tures both the similarities and differences between an unobserved
location and observed locations at different time steps, which is
beneficial for generating an effective sequence representation for
the target unobserved location 𝑙 for each relation 𝑟 .

3.4 Temporal Modeling
The spatial aggregation stage ignores the temporal correlation of
unobserved location time series when forming hidden representa-
tion for unobserved location. Thus, we further propose a temporal
modeling stage to model the temporal correlations in the hidden
representations for unobserved locations.

We propose a relation-aware GRU network to exploit related
locations’ information to guide the temporal dependency model-
ing process for each relation. The relation-aware GRU network
incorporates relational information into the temporal modeling by
augmenting GRU with relation-aware gating mechanisms.

3.4.1 GRU with context features. GRU has shown strong perfor-
mances inmodeling temporal correlations [29]. Since spatio-temporal
data is strongly impacted by the context factors such as time, we
embed context features (e.g., time of day) into the GRU sequential
learning as follows:

g𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑟
𝑔 [s̃𝑟𝑙,𝑡 , e𝑡 , z

𝑟
𝑙,𝑡−1] + b𝑟𝑔),

u𝑟𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (W𝑟
𝑢 [s̃𝑟𝑙,𝑡 , e𝑡 , z

𝑟
𝑙,𝑡−1] + b𝑟𝑢 ),

z̃𝑟
𝑙,𝑡

= 𝑡𝑎𝑛ℎ(W𝑟
𝑧 [g𝑟𝑡 ⊗ z𝑟

𝑙,𝑡−1, s̃
𝑟
𝑙,𝑡
, e𝑡 ] + b𝑟𝑧),

z𝑟
𝑙,𝑡

= (1 − u𝑟𝑡 ) ⊗ z𝑟
𝑙,𝑡−1 + u𝑡 ⊗ z̃𝑟

𝑙,𝑡
.

(7)

Here, s̃𝑟
𝑙,𝑡

is the output representation of the spatial aggregation
stage for the unobserved location 𝑙 at time step 𝑡 with respect to
relation 𝑟 ; e𝑡 denotes the context features at time step 𝑡 ; g𝑟𝑡 and u𝑟𝑡
denote the corresponding reset gate and update gate in the GRU cell,
respectively;W𝑟

𝑔 , b𝑟𝑔 ,W𝑟
𝑢 , b𝑟𝑢 ,W𝑟

𝑧 , and b𝑟𝑧 are learnable parameters;
[·, ·] denotes the concatenation operation; ⊗ denotes the element-
wise product operation; and z𝑙,𝑡 is the GRU output representation.
For simplicity, we summarize Equation (7) as:

z𝑟
𝑙,𝑡

= 𝜙 (s̃𝑟
𝑙,𝑡
, e𝑡 , z𝑟𝑙,𝑡−1), (8)

where 𝜙 (·) denotes the computation function of the GRU cell.

3.4.2 Relation-aware GRU. The bias representation 𝛿𝑟
𝑙,𝑡

is impor-
tant for guiding the information flow between different time steps
at an unobserved location. The bias indicates the difference be-
tween the unobserved location and correlated observed locations
for each relation, which reflects the reliability of the generated rep-
resentation at each time step. When the bias grows, the importance
of the input representation should decay. Thus, we introduce a
relation-aware input gate to adaptively control the importance of
the generated representation at each time step:

𝛽𝑟
𝑙,𝑡

= 1/𝑒max(0,W𝑟
𝛽
𝛿𝑟
𝑙,𝑡
+b𝑟

𝛽
)
, (9)

where W𝑟
𝛽
and b𝑟

𝛽
are learnable parameters. The negative expo-

nential formulation controls the gate 𝛽𝑟
𝑙,𝑡

∈ (0, 1]. Afterwards, we
update the input hidden representation s̃𝑟

𝑙,𝑡
by element-wise product

with the relation-aware input gate 𝛽𝑟
𝑙,𝑡
.

In addition, the influence of past hidden states should also be ad-
justed according to the bias to control the information flow between
different time steps. Thus, we propose a relation-aware forget gate
to adaptively control the influence of past hidden states:

𝛾𝑟
𝑙,𝑡

= 1/𝑒max(0,W𝑟
𝛾𝛿

𝑟
𝑙,𝑡−1+b

𝑟
𝛾 ) , (10)

where W𝑟
𝛾 and b𝑟𝛾 are learnable parameters. Then, the GRU hidden

state of previous time step z𝑟
𝑙,𝑡−1 is updated by element-wise product

with the relation-aware forget gate 𝛾𝑟
𝑙,𝑡
.

Finally, the computation of the relation-aware GRU is repre-
sented as:

z𝑟
𝑙,𝑡

= 𝜙 (𝛽𝑟
𝑙,𝑡

⊗ s̃𝑟
𝑙,𝑡
, e𝑡 , 𝛾𝑟𝑙,𝑡 ⊗ z𝑟

𝑙,𝑡−1), (11)
where𝜙 (·) is the function of standard GRU cell that defined in Equa-
tions (7) and (8). In this way, the relation-aware GRU network is able
to adaptively model the temporal correlations for the unobserved
location with the guidance of correlated locations’ information.

3.5 Multi-Relation Fusion
The importance of different relations may differ at different time
steps. We thus design a multi-relation attention mechanism to dy-
namically assign different weights to different relations at different
time steps. For an unobserved location 𝑙 , the attention score of
relation 𝑟 at time step 𝑡 is computed as:

𝑎𝑟
𝑙,𝑡

= v⊤ tanh(W𝑎z𝑟𝑙,𝑡 + b𝑎), (12)

𝜆𝑟
𝑙,𝑡

=
exp(𝑎𝑟

𝑙,𝑡
)∑

𝑟
′ ∈R exp(𝑎𝑟

′

𝑙,𝑡
)
, (13)

where z𝑟
𝑙,𝑡

is the output representation of the temporal modeling
stage, W𝑎 ∈ R𝐷×𝐷 , b𝑎 ∈ R𝐷 , and v ∈ R𝐷 are learnable parame-
ters, R is the set of heterogeneous spatial relations, and 𝜆𝑟

𝑙,𝑡
is the

attention score, indicating the importance of relation 𝑟 at time step
𝑡 . Then, the multi-relation information is fused as:

ỹ𝑙,𝑡 =
∑︁
𝑟 ∈R

𝜆𝑟
𝑙,𝑡

· z𝑟
𝑙,𝑡
, (14)

where ỹ𝑙,𝑡 ∈ R𝐷 represents the output representation for the un-
observed location 𝑙 at time step 𝑡 , which fuses multi-relation infor-
mation. Finally, we use two fully-connected layers to compute the
kriging output:

ŷ𝑙,𝑡 = W𝑦,2 (𝜎 (W𝑦,1ỹ𝑙,𝑡 + b𝑦,1)) + b𝑦,2, (15)

whereW𝑦,1 ∈ R𝐷×𝐷 , b𝑦,1 ∈ R𝐷 ,W𝑦,2 ∈ R𝐷×𝐶 , and b𝑦,2 ∈ R𝐶 are
learnable parameters, and ŷ𝑙,𝑡 ∈ R𝐶 denotes the final estimation
value for location 𝑙 at time step 𝑡 .

3.6 Model Training and Testing
We illustrate the model training and testing strategies with Figure 3.
Data is split into training and testing sets in chronological order,
and the unobserved locations for testing are unseen at training.

In the training stage, we treat an observed location 𝑖 as an un-
observed location, and use the time series data of the other 𝑁 − 1
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Figure 3: Data split in model training and testing.

observed locations to estimate the values of location 𝑖 . We repeat
this for every observed location and minimize the mean squared
error (MSE) between the estimation value x̂𝑖,𝑡 and the ground truth
x𝑖,𝑡 to optimize our model:

L(Θ) = 1
𝑁𝑃

𝑁∑︁
𝑖=1

𝑃∑︁
𝑡=1

| |x̂𝑖,𝑡 − x𝑖,𝑡 | |22, (16)

where Θ denotes all learnable parameters in INCREASE. Once the
model is trained, we can use it to perform kriging for any given
unobserved location. Note that the estimation for different locations
is independent and can be parallelized for both training and testing.

4 EXPERIMENTS
4.1 Experimental Settings
4.1.1 Datasets. We conduct experiments on three real-world spatio-
temporal datasets. (1)METR-LA [23] contains traffic speed data
collected from 207 sensors in Los Angeles County for four months
(March 1, 2012 to June 30, 2012); (2) Beijing [53] contains pollutant
concentration data (PM2.5) recorded by 36 sensors in Beijing for
one year (May 1, 2014 to April 30, 2015); (3) Xiamen [50] contains
traffic flow data collected from 95 sensors in Xiamen (a coastal city
in China) for five months (August 1, 2015 to December 31, 2015).
Appendix C.1 summarizes the statistics of the three datasets.

Due to limited data availability, we only use the spatial-proximity
relation in the METR-LA dataset. In the Beijing dataset, we use both
the spatial-proximity and func-similarity relations. In the Xiamen
dataset, we use all three types of relations. The spatial-proximity
is computed according to Equation (1) using the road network
distance for the METR-LA and Xiamen datasets, and Euclidean
distance for the Beijing dataset. For the functional similarity, we
use surrounding POIs of each category within 300 meters from a
location of interest to compute Equation (2). To derive the transi-
tion probability, we collect the taxis GPS trajectories in Xiamen to
compute Equation (3). The context features refer to the time feature
(time of day) in the experiments.

Following IGNNK [37] (one of the baseline methods), in all
datasets, we randomly select 25% of the sensors as unobserved
locations, and the rest are observed locations. We keep the same
settings for all methods for fair comparison. We take data from the
first 70% of the time steps for training and test on the rest 30% of the
time steps. We select 20% of the training set as the validation set for

early stopping. Note that the data of unobserved locations are not
used in the training or validation process. All data are normalized
via the Z-Score method.

4.1.2 Baselines. We compare our proposed model with the fol-
lowing baseline methods: (1) Ordinary kriging (OKriging) [8] is a
well-known spatial interpolation model; (2) Greedy low-rank tensor
learning (GLTL) [2] is a transductive tensor factorization model
for spatio-temporal kriging; (3) GE-GAN [40] is a transductive
method, which combines the graph embedding (GE) technique [41]
and a generative adversarial network (GAN)[13]; (4) Kriging con-
volutional network (KCN) [1] is an inductive spatial interpolation
method based on graph neural networks; (5) IGNNK [37] is an
inductive graph neural network for spatio-temporal kriging. We
provide detailed description of the baselines in Appendix C.2.

4.1.3 Evaluation metrics. We apply four popular metrics to mea-
sure the model performance, i.e., root mean squared error (RMSE),
mean absolute error (MAE), mean absolute percentage error (MAPE),
and R-square (R2), which are defined in Appendix C.3.

4.1.4 Implementation details. In each dataset, one type of sensor
readings is considered, i.e., 𝐶 = 1. The numbers of observed loca-
tions on the METR-LA, Beijing, and Xiamen datasets are 𝑁 = 157,
𝑁 = 27, and 𝑁 = 72, respectively. The numbers of unobserved
locations on the three datasets are 𝑀 = 50, 𝑀 = 9, and 𝑀 = 23,
respectively. The length of the time window is set as 𝑃 = 24 in
all datasets. The sizes of the top neighbor set N𝑟

𝑙
for each relation

are 𝐾 = 15, 𝐾 = 5, and 𝐾 = 35 for the three datasets, respectively.
The dimensionality of the hidden states is set as 𝐷 = 64. The non-
linear activation function 𝜎 (·) in our model refers to the ReLU
activation [27].

We train our model using Adam optimizer [20] with an initial
learning rate of 0.001 on an NVIDIA GeForce RTX 2080Ti GPU.

4.2 Experimental Results
4.2.1 Model performance comparison. We first compare the overall
performance of INCREASE with baseline methods, and then evalu-
ate the model performance when varying the number of observed
locations.

(1) Overall performance comparison. Table 1 summarizes the over-
all model performances. Our INCREASE (all three variants) outper-
forms all baseline methods in terms of all four metrics on the three
datasets. OKriging is a traditional kriging method, which suffers in
handling the non-linear spatio-temporal data and thus yields poor
performances. GLTL is an effective kriging method. However, it is
transductive and cannot be directly applied to estimating for new lo-
cations of interest without retraining. GE-GAN is also transductive,
while its performance is worse than GLTL in general. Indeed, mul-
tiple factors contributed to GE-GAN’s worse performance, e.g., it
does not distinguish the importance of different observed locations.
KCN is an inductive spatial kriging method, which does not con-
sider the temporal correlations. Thus, it also has larger estimation
errors than ours. IGNNK uses graph convolutional networks for
spatio-temporal kriging, which shows the best performance among
the baselines in most cases. However, it only considers the spatial
distance relation and fails to model the diverse temporal patterns
in the estimation process. Thus, it still performs worse than ours.
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Table 1: Kriging performance comparison on the three datasets. SP: spatial-proximity, FS: func-similarity, TP: trans-probability.
RMSE, MAE, MAPE: the smaller the better, R2: the greater the better. Numbers in bold denote the best results. Numbers
underlined denote the best baseline results. The improvement denotes the performance improvement of INCREASE over the
best baseline results.

Model METR-LA Beijing Xiamen
RMSE MAE MAPE R2 RMSE MAE MAPE R2 RMSE MAE MAPE R2

OKriging 12.300 8.383 0.236 0.681 41.076 25.452 0.369 0.761 63.178 45.814 0.583 0.555
GLTL 9.972 6.987 0.180 0.791 37.465 21.462 0.278 0.801 61.661 44.601 0.548 0.591
GE-GAN 11.248 7.038 0.169 0.734 41.172 23.958 0.313 0.760 66.614 46.900 0.557 0.568
KCN 10.817 7.592 0.201 0.754 40.190 23.760 0.310 0.771 62.414 45.317 0.546 0.587
IGNNK 9.028 5.917 0.158 0.828 36.818 21.916 0.307 0.808 61.231 44.968 0.521 0.601

INCREASE (SP) 8.602 5.425 0.137 0.844 34.552 19.584 0.247 0.831 59.321 42.530 0.497 0.613
INCREASE (SP + FS) - - - - 34.001 18.851 0.239 0.836 58.737 42.478 0.493 0.627
INCREASE (SP + FS + TP) - - - - - - - - 57.961 41.339 0.481 0.639

Improvement 4.7% 8.3% 13.3% 1.9% 7.7% 12.2% 14.0% 3.5% 5.3% 7.3% 7.7% 6.3%
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Figure 4: Model performance when varying the number of observed locations.
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Figure 5: Parameter study on the Xiamen dataset.

Table 2: Effect of difference modeling (RMSE).

Model METR-LA Beijing Xiamen

w/o difference modeling 8.858 34.283 58.217

w/ difference modeling (ours) 8.602 34.001 57.961

Overall, INCREASE outperforms the best baseline by up to 14.0%
in terms of the estimation errors, confirming the effectiveness of

our model design in capturing the heterogeneous spatial relations
and diverse temporal patterns from the data.

(2) Performance vs. the number of observed locations. The num-
ber of observed locations 𝑁 is often quite limited due to the high
operating costs of the sensors. To evaluate the impact of 𝑁 , we
randomly drop a fraction 𝜂 (the mask ratio) of observed locations,
i.e., using 𝑁1 = (1 − 𝜂) × 𝑁 observed locations to perform kriging
for a fixed number of𝑀 unobserved locations. For fair comparison,
we use the same settings of observed locations and unobserved loca-
tions for all methods. Figure 4 shows the results. On the METR-LA
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Table 3: Effect of relation-aware GRU network (RMSE).

Model METR-LA Beijing Xiamen

w/o 𝛽𝑟
𝑙,𝑡

8.741 34.400 58.557
w/o 𝛾𝑟

𝑙,𝑡
8.787 34.492 58.455

w/o 𝛽𝑟
𝑙,𝑡

& 𝛾𝑟
𝑙,𝑡

8.806 34.603 58.660
w/o e𝑡 8.692 34.251 58.150

relation-aware GRU (ours) 8.602 34.001 57.961

Table 4: Effect of multi-relation attention (RMSE).

Model Beijing Xiamen

concat 34.314 58.498
add 34.621 58.525

multi-relation attention (ours) 34.001 57.961

dataset, we observe that when the mask ratio is larger than 0.7, the
performance of IGNNK degrades significantly. IGNNK constructs a
graph with𝑀 + 𝑁1 nodes and propagates the information among
these nodes. When𝑀 is close to or even greater than 𝑁1, there is
too little reliable information in the graph, and the message passing
between the unobserved nodes contributes more errors and thus
hinders the model performance. In comparison, our models esti-
mate for each unobserved location independently, which avoids
the error propagation problem. On the Beijing dataset, the kriging
accuracy of INCREASE (SP + FS) degrades slower than INCREASE
(SP), again showing that the functional similarity is helpful for
identifying more correlated locations even with limited observed
locations. We observe similar results in the Xiamen dataset, demon-
strating the advantage of modeling heterogeneous spatial relations
for spatio-temporal kriging, especially on more sparse datasets.

4.2.2 Ablation study. We conduct the following ablation studies
to verify the effect of each component in our model.

(1) Effect of heterogeneous spatial relations. In Table 1, INCREASE
(SP) denotes using only the spatial-proximity relation. We observe
that our model outperforms the baseline models even in this simple
variant. This shows the effectiveness of our overall model design.
By incorporating the func-similarity relation, INCREASE (SP +
FS) improves the performance as it helps the model to find more
correlated but distant locations. In the Xiamen dataset, we further
model the trans-probability relation, and INCREASE (SP + FS +
TP) yields further performance improvements, which confirms the
importance of modeling the heterogeneous spatial relations.

(2) Effect of difference modeling. To evaluate the effect of differ-
ence modeling in the spatial aggregation stage, we design a variant
of INCREASE by removing the difference modeling component
(Equations (5) and (6)). The experimental results in Table 2 vali-
date that it is beneficial to model the differences among correlated
locations for each relation in the spatial aggregation stage.

(3) Effect of relation-aware GRU network.We conduct an ablation
study for the relation-aware GRU network in the temporal mod-
eling stage. Table 3 shows the experimental results of INCREASE

variants with modifications in the relation-aware GRU network.
When removing the relation-aware input gate (𝛽𝑟

𝑙,𝑡
) and/or the

relation-aware forget gate (𝛾𝑟
𝑙,𝑡
), the model performance degrades

significantly. This demonstrates that the relational information is
important for guiding the information flow in the temporal dimen-
sion for the unobserved locations. By incorporating the context
features (e𝑡 ), we observe a consistent performance improvement,
confirming their benefits for the kriging.

(4) Effect of multi-relation attention mechanism. To evaluate the ef-
fect of the multi-relation attention mechanism in the multi-relation
fusion stage, we conduct experiments by replacing themulti-relation
attention mechanism with simple concatenation or addition ap-
proach to fuse the multi-relation information. As only one relation
is considered in the METR-LA dataset, we run these experiments on
the Beijing and Xiamen datasets. The experimental results in Table 4
show the effectiveness of our multi-relation attention mechanism.

4.2.3 Parameter study. We study the impact of three parameters:
the number of top neighbors 𝐾 considered for each relation, the
time window length 𝑃 , and the dimensionality of hidden represen-
tations 𝐷 . Figure 5 presents the experimental results on Xiamen
dataset, we provide the results on METR-LA and Beijing datasets
in Appendix D.

(1) Impact of the number of top neighbors 𝐾 . As shown in Fig-
ure 5(a), a larger 𝐾 provides more correlated sensors’ data for the
estimation, which yields better results initially. As 𝐾 increases fur-
ther, farther neighbors are considered, introducing noises and thus
negatively impacting the model performance.

(2)Impact of the time window length 𝑃 . We observe from Fig-
ure 5(b) that the RMSE first decreases and then increases with the
increase of the time window length 𝑃 . This is because a larger 𝑃
may offer more training signals which helps the model performance.
However, when 𝑃 gets too large, it also brings challenges to model
the long-term temporal dependencies to make accurate estimations.

(3) Impact of the dimensionality of hidden representations 𝐷 . Fig-
ure 5(c) shows that increasing 𝐷 enhances the model’s learning
capacity. However, when 𝐷 gets larger than 64, the model estima-
tion performance degrades significantly, as the model needs to learn
more parameters and may suffer from the over-fitting problem.

5 CONCLUSION
We proposed INCREASE, an inductive spatio-temporal graph rep-
resentation learning model for spatio-temporal kriging that can
estimate the values for a set of unobserved locations given the
data from observed locations. We conducted extensive experiments
on three real-world spatio-temporal datasets. Experimental results
show that INCREASE outperforms state-of-the-art methods, and
the advantage is up to 14.0% in terms of the estimation errors. The
performance gains of INCREASE are more significant when there
are fewer observed locations available. For future work, we plan to
incorporate more relations (e.g., social interaction among locations)
into our model to further improve its performance.
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Table 5: Table of notations.

Symbol Definition

𝑃 the time window length
𝑁 the number of observed locations
𝑀 the number of unobserved locations
𝑖 an observed location
𝑙 an unobserved location
𝑟 a type of relation

𝛼𝑟
𝑖,𝑙 ;𝑡

the location relevance between locations 𝑖 and 𝑙 at time
step 𝑡 for relation 𝑟

𝛽𝑟
𝑙,𝑡

the relation-aware input gate
𝛾𝑟
𝑙,𝑡

the relation-aware forget gate
𝜆𝑟
𝑙,𝑡

the attention score of location 𝑙 at time step 𝑡 for relation 𝑟
x𝑖,𝑡 the observation data of location 𝑖 at time step 𝑡
e𝑡 the context features at time step 𝑡

h𝑟
𝑖,𝑡

the hidden representation of location 𝑖 at time step 𝑡 for
relation 𝑟

𝛿𝑟
𝑙,𝑡

the bias of location 𝑙 at time step 𝑡 for relation 𝑟
s̃𝑟
𝑙,𝑡

the output representation of the spatial aggregation stage
z𝑟
𝑙,𝑡

the output representation of the temporal modeling stage
ỹ𝑙,𝑡 the output representation of the multi-relation fusion stage
ŷ𝑙,𝑡 the estimated value for location 𝑙 at time step 𝑡

A RELEVANCE TOWEB
Spatio-temporal graphs have been widely applied in web applica-
tions, e.g. social networks [28, 48], Web of Things applications [16,
17]. However, in real-world, inferring the knowledge for unob-
served nodes is extremely challenging due to the heterogeneous
spatial relations and diverse temporal patterns, which largely limits
the web and social graph applications of existing methods [1, 37].
Thus, the inductive graph representation learning model for spatio-
temporal kriging (INCREASE) studied in this paper, aiming to esti-
mate the data for unobserved locations using the observation data,
essentially addresses a core challenge of the web – improving the
spatio-temporal kriging performance with inductive graph repre-
sentation learning, to enable the web as a technical infrastructure
for web and social applications. It will also enhance the understand-
ing of proactiveness and inclusiveness of social web analysis and
graph algorithms.

B NOTATIONS
We present some important notations used in this paper in Table 5.

C EXPERIMENTAL SETUP
C.1 Datasets
We present statistics of the three datasets in Table 6, and visualize
the distribution of observed locations and unobserved locations of
the three datasets in Figure 6.

C.2 Baselines
We compare our proposed model INCREASE with the following
baseline methods.

• Ordinary kriging (OKriging) [8] is a well-known spatial
interpolation model. We test a number of variograms (i.e.,

linear, power, gaussian, spherical, exponential, hole-effect)
and choose the best based on the smallest residual sum of
squares.

• Greedy low-rank tensor learning (GLTL) [2] is a transductive
tensor factorization model for spatio-temporal kriging. GLTL
takes an input tensor of shape 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 × 𝑡𝑖𝑚𝑒 × 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠
with zeros at the unobserved locations, and it recovers the
values for the observed locations via tensor completion.

• GE-GAN [40] is a transductive method, which combines
the graph embedding (GE) technique [41] and a generative
adversarial network (GAN)[13]. It uses GE to select the most
correlated locations and GAN to generate estimations for
the unobserved locations.

• Kriging convolutional network (KCN) [1] is an inductive
method based on graph neural networks. It is essentially a
spatial interpolation method, i.e., it performs kriging for each
time step independently. There are three variants of KCN [1]:
(1) KCN based on graph convolutional networks [21], (2)
KCN based on graph attention networks [31], and (3) KCN
based on GraphSAGE [14]. We use the best one for testing
based on the validation loss.

• IGNNK [37] is an inductive graph neural network for spatio-
temporal kriging. It constructs a spatial graph with both
observed and unobserved locations as the nodes, in which
the values at different time steps are considered as features
of the nodes (0’s for the unobserved locations). Then, it
conducts graph convolutions for message passing to recover
the values for the unobserved locations.

C.3 Evaluation Metrics
We apply four widely used metrics to measure the model perfor-
mance, i.e., root mean squared error (RMSE), mean absolute error
(MAE), mean absolute percentage error (MAPE), and R-square (R2),
which are defined as follows.

𝑅𝑀𝑆𝐸 =

√√√
1
𝑀𝑃

𝑀∑︁
𝑙=1

𝑃∑︁
𝑡=1

(ŷ𝑙,𝑡 − y𝑙,𝑡 )2, (17)

𝑀𝐴𝐸 =
1
𝑀𝑃

𝑀∑︁
𝑙=1

𝑃∑︁
𝑡=1

|ŷ𝑙,𝑡 − y𝑙,𝑡 |, (18)

𝑀𝐴𝑃𝐸 =
1
𝑀𝑃

𝑀∑︁
𝑙=1

𝑃∑︁
𝑡=1

|
ŷ𝑙,𝑡 − y𝑙,𝑡

y𝑙,𝑡
|, (19)

𝑅2 = 1 −
∑𝑀
𝑙=1

∑𝑃
𝑡=1 (ŷ𝑙,𝑡 − y𝑙,𝑡 )2∑𝑀

𝑙=1
∑𝑃
𝑡=1 (ȳ − y𝑙,𝑡 )2

, (20)

where ŷ𝑙,𝑡 and y𝑙,𝑡 are the estimated value and ground truth of
location 𝑙 at time step 𝑡 , respectively, and ȳ = 1

𝑀𝑃

∑𝑀
𝑙=1

∑𝑃
𝑡=1 y𝑙,𝑡 in

Equation (20) is the average value of the ground truth.

D PARAMETER STUDY ON THE METR-LA
AND BEIJING DATASETS

We present the parameter studies on METR-LA and Beijing datasets
in Figures 7 and 8, respectively.
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Table 6: Summary statistics of the three datasets.

Dataset Time period Time interval # Time steps # Sensors Measurement

METR-LA 1 March 2012 - 30 June 2012 5-minute 34,272 207 Traffic speed
Beijing 1 May 2014 - 30 April 2015 1-hour 8,760 36 PM2.5
Xiamen 1 August 2015 - 31 December 2015 5-minute 44,064 95 Traffic flow

(a) METR-LA (b) Beijing
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Figure 6: Distribution of observed locations and unobserved locations of the three datasets.
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Figure 7: Parameter study on the METR-LA dataset.
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Figure 8: Parameter study on the Beijing dataset.

683


	Abstract
	1 Introduction
	2 Related Work
	2.1 Spatio-Temporal Prediction
	2.2 Spatio-Temporal Kriging

	3 Spatio-Temporal Kriging
	3.1 Problem Definition
	3.2 Overview
	3.3 Spatial Aggregation
	3.4 Temporal Modeling
	3.5 Multi-Relation Fusion
	3.6 Model Training and Testing

	4 Experiments
	4.1 Experimental Settings
	4.2 Experimental Results

	5 Conclusion
	Acknowledgments
	References
	A Relevance to Web
	B Notations
	C Experimental Setup
	C.1 Datasets
	C.2 Baselines
	C.3 Evaluation Metrics

	D Parameter Study on the METR-LA and Beijing Datasets

