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Abstract—Road markings extraction (RME) from 3D point cl

ouds acquired by mobile LiDAR systems has been widely used for

 road safety and autonomous driving. However, due to the increa

sing awareness of personal data protection and national informat

ion security regulations, most autonomous driving companies are

 not willing to share their private point clouds data with the com

munity. Therefore, such restriction of centralized training might i

nevitably inhibit the effectiveness of RME procedure. Federated l

earning (FL) is a distributed machine learning architecture that c

ould address the aforementioned privacy-accuracy dilemma to co

llaboratively learn a global RME model from multiple clients wit

hout sharing raw data.  In this paper, we propose a novel  FedRM

E, a federated road markings extraction system to collaboratively

 learn a global RME model with multiple privacy-preserved local 

models from 3D mobile LiDAR point clouds. FedRME adopt the 

classical FedAvg model to construct a generalizable global featur

e embedding model without accessing local data. Moreover, to tac

kle data heterogeneity problem that local models vary in point clo

uds volumes and categories, we design a dynamic weighting mech

anism to optimize the cooperative training effectiveness before se

rver aggregation. Experimental results on three real-world mobil

e LiDAR point clouds datasets with federated learning settings de

monstrate that FedRME not only achieves superior performance 

but also reduces computation by up to 25%.The source code is av

ailable at https://github.com/WwZzz/easyFL#FedRME. 

Keywords—federated learning; cooperative computing; road 

markings extraction; mobile laser scanning; point clouds.  

I. INTRODUCTION 

Road markings have long been used to provide driving 
guidance to road participants. Road markings extraction (RME) 
is to distinguish the road markings from other road surface 
elements [1, 2, 3]. As a result, RME in an accurate and timely 
manner is of vital importance to many applications, such as road 
safety, intelligent navigation, autonomous driving.  

Mobile laser scanning (MLS) systems, such as vehicle-
mounted mobile LiDAR system [4, 5], backpacked laser 
scanning system [6], have been widely used in RME tasks due 
to their higher retro-reflective property from 3D point clouds 
data. However, the increasing awareness of personal data 
protection [7] and national information security regulations have 
limited the utilization of MLS systems as well as their 
downstream applications including RME. For example, most 
automated driving companies are not willing to share their local 
point clouds data and RME models, that are separately collected 
and stored in multiple systems, with the community. In short, 

the restriction of centralized training inevitably inhibits the 
effectiveness of automated RME procedure. 

Fig. 1. A scenario of federated learning based road markings extraction. The 
iterative process are: 1) road marking images extracted from 3D point clouds 
processing by multiple mobile laser scanning systems (from left to right: 
RIEGL VMX-450 system, lightweight vehicle-mounted mobile LiDAR system, 
backpacked laser scanning system); 2) local training and sending gradients; 3) 
server aggregation; 4) sending back global model; and 5) updating local 
models. 

Federated learning (FL) is emerging as a privacy-aware 
machine learning paradigm [8, 9, 10, 12, 13]. The architecture 
of FL are likely to address the aforementioned privacy-accuracy 
dilemma during RME that distributed clients collaboratively 
learn a global model without sharing raw data. Fig. 1 shows the 
motivating scenario of federated road markings extraction.  

The iterative process of federated learning based road 
markings extraction are (as shown in Fig. 1):  

1) road marking images are extracted after 3D point clouds
processing methods by multiple mobile laser scanning systems, 
such as RIEGL VMX-450 system (left in the bottom Fig. 1), a 
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lightweight vehicle-mounted laser scanning system (middle in 
the bottom Fig. 1), and a self-developed assembled backpacked 
laser scanning system (right in the bottom Fig. 1);  

2) each client performs local training, and sends encrypted 
gradients without sharing training data with server;  

3) server conducts secure aggregation without learning 
information about any client;  

4) server sends back the aggregated global model to each 
client;  

5) each client updates its local model with the decrypted 
gradients. 

The potential benefit of adopting FL to RME tasks is tw
ofold. First, since clients cooperatively share model/gradients 
updates instead of training data with the server [8], federated le
arning can effectively mitigate potential privacy leakage risks d
uring RME. Second, FL could reduce communication overhead
 by avoiding massive data exchanging from multiple mobile Li
DAR systems. However, this novel yet realistic federated settin
g brings two unique technical challenges, which have never bee
n explored so far. 

Challenge 1: How to cooperatively learn a powerful 
global model from multiple clients? In our scenario (Fig. 1), 
the global model is distributed into a set of small local RME 
tasks with heterogeneous feature and data distributions. It is yet 
unclear that how to cooperatively train a separate RME model 
on each task, in order to capture the global point clouds data 
distribution under the data access restriction in federated 
learning. Moreover, training a universal applicable global model 
is also prone to overfitting. 

Challenge 2: How to cope with data heterogeneity 
problem of local RME models? Unlike FL systems in other 
domain such as CV and NLP, whose data samples of images or 
texts are independent, data samples in point cloud images vary 
greatly in point clouds volumes and categories. For example, in 
the bottom images of Fig. 1, in terms of the spatial density of 
point clouds, the zebra crossing is denser than the lane line.  
Therefore, it is still challenging to tackle this heterogeneity issue 
before server aggregation. 

To address the above two challenges, we propose a paradigm 
FedRME, a federated road markings extraction system to 
collaboratively learn a global RME model with multiple 
privacy-aware local models from 3D mobile LiDAR point 
clouds. FedRME adopt the classical FedAvg model to construct 
a generalizable global feature embedding model without 
accessing local data. Moreover, to tackle data heterogeneity 
problem that local models vary in point clouds volumes and 
categories, we design a dynamic weighting mechanism to 
optimize the cooperative training effectiveness before server 
aggregation. Experimental results on three real-world mobile 
LiDAR point clouds datasets with federated learning settings 
demonstrate that FedRME achieves superior performance on all 
evaluation metrics. 

The rest of the paper is organized as follows. In Section II, 
we review related works about RME and federated learning. 
Section III presents the proposed FedRME method. We conduct 
extensive experiments and discuss evaluation results in Section 

IV. Section V summarizes this paper and provides future 
directions. 

II. RELATED WORKS 

A. Road Markings Extraction and Classification 

 Road markings extraction (RME) is to distinguish the road 
markings from other road surface elements, as road markings 
usually show higher intensities than road surfaces. Recently, 
threshold-based methods have been commonly used for road 
markings extraction. The multi-segment threshold strategy [1] 
first divides point clouds into several blocks. Then, each block 
is divided into multi-segment structures with a width value. 
Finally, to extract road markings, the multi-segment structures 
are segmented separately. Spatial Density Filtering (SDF) 
distinguishes road marking points from noise by calculating the 
spatial density at every point. Later, weighted neighboring 
difference histogram (WNDH) and multiscale tensor voting 
(MSTV) methods [10] are proposed to segment and extract road 
markings from noise corrupted Geo-Referenced Feature (GRF) 
images. Specifically, WNDH first calculates the intensity 
histogram of the point cloud and obtains a dynamic threshold. 
Then, MSTV algorithm further filters out noise data in order to 
extract the correct road markings. 

Following the extraction process, the road markings are 
classified into different groups for further applications. Yu et al. 
[1] utilizes the Euclidean distance clustering to group markings 
into clusters based on the Euclidean distances to their neighbors. 
First, a voxel-based normalized cut segmentation method was 
used to group road markings into large and small size road 
markings. Then, a trajectory curb line based method was 
proposed to classify large-size markings. A Deep Boltzmann 
Machine (DBM) was used to classify small-size markings. 
Similarly, Soilán et al. [3] proposes a method based on the 
Gaussian Mixture Model (GMM). In their method, the intensity 
distribution of a road that contains road markings can be 
separated into road surface and road markings that are 
approximated by Gaussian distributions, with the higher mean 
distribution representing the intensity distribution of the road 
marking points. Their method calculates the probability of a 
point belonging to a road marking by estimating the parameters 
of the two Gaussian distributions. In addition, Cheng et al. [11] 
proposed a road markings extraction method, using four 
geometric features including area, perimeter, estimated width, 
and orientation. Because this method uses a simple segmentation 
strategy, it is difficult to handle markings like text. In addition, 
it is difficult for these four geometric features to correctly 
represent an incomplete road marking. 

However, due to the awareness of personal data protection 
and national information security regulations, the 
aforementioned centralized RME methods might face the data 
access restriction. For example, most automated driving 
companies are not willing to share their RME models for privacy 
and competition concerns. 

B. Federated Learning 

Federated Learning (FL) is an emerging paradigm for 
cooperatively training with decentralized data without sharing 
raw data [8, 12]. FedAvg [8] is designed to train a global model 
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collectively from isolated clients under the orchestration of a 
central server.   

Statistical heterogeneity, such as non-IID data, is one of the 
key challenges of FL [13, 14]. In order to improve non-IID 
performance, Zhao et al. [15] proposed to share partial data 
representing global distribution with clients. Yao et al. [16] 
proposed FedMeta to fine-tune the server model after 
aggregation using metadata acquired from voluntary clients. Li 
et al. [17] offer FedProx, a FL model to accelerate the 
convergence of FedAvg by restricting the local update to be 
closer to the global model.  

To the best of our knowledge, we are the first to explore the 
implementation of FL algorithm to road markings extraction. 
Specifically, our proposed FedRME method customizes the 
FedAvg model to construct a generalizable global feature 
embedding model without accessing sensitive point clouds data. 
Moreover, we design a dynamic weighting mechanism to tackle 
the data heterogeneity issue that local RME models vary in point 
clouds volumes and categories. 

III. THE FEDRME METHOD

A. Overview 

We first provide an overview of the architecture of our 
federated road markings extraction system, FedRME (as shown 
in Fig. 2). FedRME adopt the classical FL framework, and its 
main components include data collection and processing, local 
training in the client side, and server aggregation in the server 
side (bottom up in Fig. 2).  

Fig. 2. Architecture of our federated road marking extraction system 
(FedRME), including 1) data collection and processing; 2) local training in the 
client side with weighting calculation (WC) and focal loss optimization (FLO) 
modules; and 3) server aggregation in the server side. 

In order to cope with data heterogeneity problem during 
local training procedure, we design two novel modules in the 

client side: weighting calculation (WC), and focal loss 
optimization (FLO). When 3D point clouds processing is 
finished, a set of road marking images will be introduced to local 
training for a specific client. On one hand, a weighting 
calculation (WC) module is applied to compute the weighting 
factor of the client by evaluating the volumes and categories of 
road marking images. By using WC module, the potential data 
heterogeneity problem of the client would be addressed. On the 
other hand, we utilize U-Net [18] to conduct road markings 
extraction. Unlike the conventional U-Net model using cross-
entropy directly, we introduce a novel Focal Loss (FLO) module 
as a new loss function, so that model training would pay much 
attention to hard samples (e.g., zebra crossing) which take much 
training times. By using FLO module, the training model will 
raise the priority of these hard samples to optimize the overall 
model prediction accuracy. The detail design of U-Net, WC, and 
FLO will be described in the next sub-section. 

B. Local Training with Dynamic Weighting Mechanism 

1) Road Markings Extraction with U-Net
Since each pixel in  the marking images either represents 

road marking points or non-road marking points, it is reasonable 
to consider the road markings extraction task as a binary 
classification problem. Conventional U-Net [18] is an encoder-
decoder network, which sets connections between the encoder 
and decoder. The pipeline of U-Net is illustrated in Fig. 3. The 
network structure consists of two parts: the contracting part and 
the expansive part. First, the contracting process consists of four 
downsampling options. For each step in the downsampling 
option, there are two 3 � 3 convolutional layers, following with
a rectified linear unit (ReLU) and a 2 � 2 max pooling layer
with stride. Later, the down-sampled results are input into the 
next encoder layer. Second, the expansive part consists of four 
upsampling options. For each step in upsampling option, the 
feature maps are up-sampled by deconvolution, where the size 
of the deconvolution kernel is  2 � 2 and the stride is 2 � 2.
Besides, the results of deconvolution are connected with the 
saved convolution results in corresponding encoder layers. 
Finally, the segmentation results are output by the feature maps 
with a 1 � 1 convolution, a softmax activation function and an
argmax function. 

Fig. 3. U-Net structure [18]. 
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In this paper, we modify U-Net [18] to conduct federated 
road markings extraction. Unlike the conventional U-Net model 
using cross-entropy directly, we introduce a novel Focal Loss 
(FLO) module as a new loss function, so that model training 
would pay much attention to hard samples (e.g., zebra crossing). 
See more details in the next sub-section (i.e., Focal Loss 
Optimization). 

2) Focal Loss Optimization (FLO) 
Unlike the original U-Net model using cross-entropy, we 

modified the model by applying the Focal Loss (FLO) as a new 
loss function to achieve superior performance for road markings 
extraction. In our task, we use a weighting factor wf  to address 
class imbalance problem. Moreover, we add a modulating factor 
mf  to the cross entropy loss in order to make the overall model 
training focus much on hard samples (e.g., zebra crossing) 
which take much training times. By using FLO module, the 
training model will raise the priority of these hard samples to 
optimize the overall model prediction accuracy. The focal loss 
function for binary classification task is defined as: 

 lossfl = � -wf (1-p)
mf log�p� ,        if      y=1

 -	1-wf
pmf log�1-p� ,     otherwise 
 (1) 

where p is the probability that model predicts positive, and y is 
the class that model predicts. 1 means positive.  

3) Weighting Calculation (WC) 
For the client-side, the quantity of each category is quite 

different, which means the data are not independent and 
identically distributed (non-IID). However, standard federated 
algorithms like FedAvg [8] simply aggregates global model by 
averaging the  gradients sent from each client, which may not 
perform well in scenarios such as road markings extraction  
because of data heterogeneity among clients. Therefore, we 
modified the FedAvg framework by calculating each client’s 
weighting using their distribution of categories, instead of 
averaging clients’ gradients with the number of clients. The 
weighting for each client can be represented as: 

 Weighting
i
 = 

NPi

∑ NPk
n
k=1

  (2) 

in which i is the client ID that participate in training, n is the total 
number of the clients. In addition, NP function is defined as:  

 �� =  ∑ �������������
�∗ ��    (3) 

in which i is the client ID as well,  RMPixelk is the quantity of 
road markings pixel in groundtruth image k, M is the number of 
training images in client i and S is the training image size. 

C. Server Aggregation and Updating Local models  

At the end of each training round, the server aggregates the 
models which are uploaded from all clients with their own 
weighting factors. After that, the server sends back the global 
model. Finally, all clients update their local models with global 
model. By adopting both weighting calculation and focal loss 
module before server aggregation, both standalone training and 

server aggregation will focus on the hard and positive samples, 
which might result in better extraction performance .  

In summary, the proposed FedRME model can be described 
as ��� !"#ℎ% 1: 

Algorithm 1: Federated Road Markings Extraction 

Input:  Local epoch E, batch size B, training round R, 
              number of clients M, local weighting  ω 

Output: Global model &� 
1 :  for each client i = 0 to M-1 do 

2 :        for each local epoch e = 0 to E-1 do 

3 :              for b in batch B do 

4 :                    precision←(batch predict with &�'() 

5 :                   � ))*�←(focal loss calculation with Eqn 1) 

6 :              end for 

7 :              update �!+,"-.#� using � ))*� 
8 :        end for 

9 :        upload �!+,"-.#� and /� to Server  

10: end for 

11: for each client i = 0 to M-1 do 

12:      update &� with �!+,"-.#� and /� 
13: end for 

14: send back &� to each client i 

IV. EXPERIMENTS AND EVALUATIONS 

In this section, we firstly introduce our dataset used in 
experiments. After that, we describe  our experimental settings. 
Then we present the overall performance of FedRME method 
compared with FedAvg. Finally, we analyze the optimization 
methods with ablation studies, computation costs, respectively. 

A. Dataset 

We evaluate all experiments with nine road MLS point 
clouds data, including three highway point clouds and six urban 
road point clouds, which are measured by a RIEGL VMX-450 
system [5], a lightweight vehicle-mounted laser scanning system 
(VLP-32C), and an assembled backpacked laser scanning 
system [6], respectively. The latter two systems are developed 
by Xiamen University. Table Ⅰ lists the statistics of the datasets, 
including five different categories of road markings. It is noted 
that these datasets vary greatly in road markings volumes and 
categories.  

TABLE I.  NUMBER OF ROAD MARKINGS IN DATASETS FROM VMX-450  

SYSTEM, VLP-32C SYSTEM AND BACKPACKED SYSTEM. 

Category VMX-450 VLP-32C BACKPACKED 

Dashed 
line 

433 286 65 

Text 13 6 / 

Arrow 15 11 68 

Diamond 11 3 / 

Zebra 
crossing 

12 20 / 

Lane line 106 156 200 

Triangle 5 / 23 
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Moreover, as the datasets are collected from discontinuous 
roads, their appearances are quite different as well. In short, 
these characteristics of the datasets simulate data heterogeneity 
in real scenarios. 

Furthermore, to create a non-IID data partition, we extracted 
9 road point clouds into 3 parts based on highway, urban and 
mixed road point clouds dataset settings, respectively.  

B. Experimental Setup 

1) Evaluation Metrics 
Road markings extraction can be evaluated using the 

following three performance metrics: 

 Precision = TP

TP+FP
 (4) 

 Recall = TP

TP+FN
 (5) 

 F1-Score = 2×Precision×Recall

Precision+Recall
 (6) 

In these equations, TP is the number of true positives, FP is 
the number of false positives and FN is the number of false 
negatives. 

2) Implementation Details 
We implement FedAvg and FedRME in Python based on 

PyTorch framework. We run clients on two NVIDIA RTX3090 
GPUs and run the server on Intel Xeon Gold 6142 CPU. Model 
update and aggregation are conducted through the PyTorch 
communication backend. For all experiments, we evaluate and 
save both local models and the global model in each round. 
Finally, we choose and save the best performance on validation 
dataset among all rounds. 

3) Parameter Settings 
The parameter settings are as follows: the focal loss 

weighting factor wf = 0.3 and mf = 2.0, batch size 0 = 32, total 
communication round 1 = 20, the initial learning rate L = 0.0001. 
We set local  training epoch 2 = 5 for federated learning 
experiments, and E = 100 for local learning experiments. The 
number of clients is set as M = 3, 5 and 9. 

C. Performance Comparison 

We demonstrate the effectiveness of FedRME in comparison 
with standalone training, global training and FedAvg methods. 

Standalone training means that each client training U-Net model 
as described in Section Ⅲ with its dataset without collaborating 
with other clients. The global training method merges all 9 road 
point clouds data for training with U-Net model as well. The 
FedAvg method, which aggregates global model by calculating 
average loss, then updates the clients’ models by replacing them 
with global model. The comparison of all experiments results is 
shown in table II. The proposed FedRME outperforms all 
distributed methods (i.e., LocRME and FedAvg) on all 
evaluation metrics. Specifically, FedRME achieves superior 
performance up to 4.67% in terms of precision, 8.13% in terms 
of recall, and 7.38% in terms of F1-score, respectively. 

D. Ablation Studies 

To further investigate the effect of two representative 
components in our model, we compare FedRME with its two 
variants as follows: 

• FedRME w/o FLO: FedRME without the FLO module (i.e., 
focal loss optimization). 

• FedRME w/o WC: FedRME without the WC module (i.e., 
weighting calculation). 

Table Ⅲ shows the Precision, Recall and F1-Score results 
of full model compared with two variants, respectively. In 
general, FedRME outperforms all variants. Especially, 
FedRME performs better than FedRME w/o FLO and FedRME 
w/o WC by a large margin when M=3, indicating that two 
components (i.e., FLO and WC) are of vital importance for 
cooperatively federated road markings extraction tasks. In 
addition, with the increase of clients (i.e., M=5, 9), the 
performance advantage of FedRME may narrow because the 
data heterogeneity problem grows in accordance with the 
increase number of clients in federated learning system. 

E. Computation Costs 

Table Ⅳ compares the computation costs of FedRME with 
its two variants and FedAvg. We define computation costs as the 
least communication rounds R, when the global model’s 
predicted results on validation dataset (i.e., intersection over 
union (IoU)) is greater than 0.8. The greater IoU value means 
the better results. Compared with FedAvg method, both 
FedRME w/o FLO and FedRME w/o WC method could achieve 
the state-of-the-art computation cost. In addition, our proposed 
FedRME, which is a cooperative optimization method, reduces 
computation cost up to 25% when M=3. 

TABLE II.  RESULTS ON DATASETS WITH E=5, R=20, M=3, 5, AND 9 (BATCH SIZE = 8 WHEN M=9, WHILE BATCH SIZE = 32 WHEN M={3,5}). 

Model Setting 
Precision Recall F1-Score 

M=3 M=5 M=9 M=3 M=5 M=9 M=3 M=5 M=9 

LocRME 52.519% 48.672% 45.976% 35.815% 40.685% 23.304% 42.588% 44.322% 30.930% 

FedAvg 67.591% 56.059% 54.200% 42.091% 41.685% 29.681% 51.876% 46.736% 38.270% 

FedRME 72.262% 58.603% 55.912% 50.219% 43.035% 37.049% 59.257% 49.627% 44.565% 

Global 
(reference only) 

79.004% 92.706% 85.308% 
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TABLE III. ABLATION STUDIES WITH E=5, R=20, M=3, 5 AND 9 (BATCH SIZE = 8 WHEN M=9, WHILE BATCH SIZE = 32 WHEN M={3,5}). 

Model Setting 
Precision Recall F1-Score 

M=3 M=5 M=9 M=3 M=5 M=9 M=3 M=5 M=9 

FedRME w/o FLO 66.901% 55.937% 55.269% 47.218% 41.829% 35.008% 55.362% 47.866% 42.865% 

FedRME w/o WC 67.736% 58.049% 54.081% 43.915% 41.946% 33.522% 53.284% 48.700% 41.389% 

FedRME 72.262% 58.603% 55.912% 50.219% 43.035% 37.049% 59.257% 49.627% 44.565% 

TABLE IV. COMPUTATION COST COMPARISON OF DIFFERENT METHODS 

WITH IOU THRESHOLD=0.8, M=3, 5 AND 9. 

Methods FedAvg 
FedRME  

w/o FLO 

FedRME  

w/o WC 
FedRME 

M=3 8 8 9 6 

M=5 11 12 10 12 

M=9 14 14 13 13 

V. CONCLUSION 

In this paper, we present FedRME, a novel federated road 
markings extraction system to collaboratively learn a global 
RME model without sharing sensitive 3D point clouds data. To 
address the data heterogeneity among clients, we adopt the 
classical FedAvg model to construct a generalizable global 
feature embedding model without accessing local data. For 
cooperative optimizations in clients, we design a dynamic 
weighting mechanism to enhance the cooperative training 
effectiveness before server aggregation. Extensive empirical 
studies on three real-world mobile LiDAR point clouds datasets 
demonstrate that FedRME effectively elevates performance and 
reduces computation by up to 25%. In the future, we plan to: 1) 
consider the system heterogeneity among clients, such as user 
dropouts; and 2) deploy the federated system on distributed 
computers rather than simulated nodes. 
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