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ABSTRACT
The Centralized Training with Decentralized Execution
paradigm (CTDE), which trains policies centrally with ad-
ditional information, is important for Multi-Agent Reinforce-
ment Learning (MARL). For CTDE, value function factoriza-
tion methods make use of state during training and factorize
the value function into multiple local value functions for
decentralized execution. These approaches do not fully con-
sider the relational information among agents, resulting in
sub-optimal models for complex tasks. To remedy this is-
sue, we propose QRelation which is a graph neural network
approach for value function factorization. It considers both
the static relations (e.g., agent types) and dynamic relations
(e.g., close-by). We show that QRelation can obtain better
results than state-of-the-art methods on challenging StarCraft
II benchmarks.

1. INTRODUCTION

Many of the multi-agent systems (MAS) problems, such as
robot control [1], and vehicle driving [2] can be modeled as
cooperative Multi-Agent Reinforcement Learning (MARL)
problems where a group of agents must cooperate to achieve
their common goal. MARL has attracted great research inter-
est due to its social and economic impact [3]. MARL is hard
to learn due to the scalability and the partial-observability is-
sues [4]. To address these issues, many approaches adopt the
Centralized Training with Decentralized Execution paradigm
(CTDE) [5]. To learn decentralized policies, CTDE uses addi-
tional information, such as reward and state, during training.
CTDE has attracted recent attention from the MARL com-
munity [6]. However, many challenges about how to exploit
CTDE remain.

Policy-based and value factorization based methods ex-
ploit CTDE by making use of states during training. Policy-
based methods [7] learn a value function Qtot to guide the
optimization of decentralized policies. However, they are
sample-inefficient due to their on-policy nature. Value fac-
torization approaches [6, 8] factorize Qtot into multiple local
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value function Qi; and each agent selects its action greedily
with respect to Qi. The use of value factorization is moti-
vated by exploiting the independence among agents in CTDE.
These methods do not take into account the rich relations that
naturally exists among agents, leading to sub-optimal perfor-
mance for complex tasks [8].

Relations are the way to which two agents are connected.
In MAS, there exist many types of relationships (e.g., healer-
warrior), which could be used in CTDE. We propose to con-
sider both static and dynamic relations simultaneously among
agents. Static relationships are explicitly described and con-
sistent relationships. For example, the alliance-enemy, the
predator-prey relationships. Moreover, there are many dy-
namic relationships that formed through agent interactions.
For example, an agent could collide/chase another agent,
stand in front/back of another agent.

In this work, we propose QRelation, which fully makes
use of the relational information of agents for value function
factorization. QRelation models the MAS as a graph, where
each agent represents a node, and an edge connecting two
nodes represents a relationship. QRelation models static rela-
tionships, such as connections among agents of various types,
through the use of an static relational layer. And it uses the
dynamic relational layer on graphs to model the dynamic rela-
tionships. QRelation is flexible enough to allow for multiple
edges between a pair of agents, as the two agents could have
numerous relationships. To obtain consistent agent behaviors,
we adopt a relational regularizer that restricts the learned rela-
tional representations (i.e., attention weights) from changing
too frequently.

We conduct large-scale experiments to study the perfor-
mance of QRelation on the StarCraft II MARL tasks. The
results show that QRelation can perform better than state-
of-the-art approaches through using both static and dynamic
agent-based relationships.

2. RELATED WORK

Researchers have proposed various MARL communica-
tion methods [3, 9, 10] and actor-critic methods [11, 12].
Value factorization approaches are widely adopted in MARL.



VDN [13] factorizes the value function Qtot as a sum of
all the value functions of agents Qi. During execution, each
agent acts greedily according to theQi. VDN supports the ad-
ditive relationships among Qi and Qtot. QMIX [6] supports
monotonic relationships among Qi and Qtot, and Weighted
QMIX[14] improves it through weighting optimal actions.
QTRAN [8] supports more general factorization by trans-
forming the value function into a VDN-factorized function
with linear constraints. QTRAN++ [15] improves QTRAN
by introducing more training constraints and well-designed
neural networks. Qatten [16] adopts the attention mecha-
nism to focus on certain agents/scenarios when factorizing
value function. QPlex [17] uses dueling network to factorize
Qtot. DMIX [18] integrates distributional RL with QMIX.
As a value factorization method, QRelation considers the
relationships among agents and models the static and dy-
namic relational information through GNN and the attention
mechanism.

3. THE QRelation METHOD

The key to QRelation is the insight that besides the state and
observation, the relational information can be used in CTDE
to obtain better cooperative agent behaviors. QRelation uses
graphs to model the static and dynamic relational information
among agents to build a comprehensive value function, thus
benefiting the agent execution.

3.1. Dec-POMDPs

The cooperative Multi-Agent Reinforcement Learning (MARL)
scenarios can be modeled as Decentralized Partially Ob-
servable Markov Decision Processes (Dec-POMDPs) [19].
G = 〈S, {Ai}ni=1, P, r, {Oi}ni=1, {σi}ni=1, n, γ〉. S is the set
of states; Ai is the set of discrete actions for agent i. A joint
action of all agents is defined as at ∈ A := A1 × . . . × An.
At a discrete time step t and state st, after the joint action
is issued, the next state st+1 ∈ S of the environment is
drawn from the transition function st+1 ∼ P (·|st,at). The
agents receive a shared reward rt after the state transition
happens. Each agent can only observe a part of the environ-
ment oti ∈ Oi which is drawn from oti ∼ σi(·|st). γ ∈ [0, 1)
is the discount parameter.

3.2. Overview

The architecture of QRelation is depicted in Figure 1. QRe-
lation factorizes the value function Qtot into individual lo-
cal value function Qi. Agent i selects its action ui greed-
ily according to Qi(o

t
i, u), without communication with each

other. The neural architecture of the agent consists of a fully-
connected layer that encodes the local observation, a Gate Re-
current Layer (GRU) [20] layer, which encodes the history of

local action-observation, and a fully-connected layer which
outputs Qi. All the agents share the same set of parameters.

QRelation takes local value function Qt
i, observations oti,

and state st as input, and train a centralized critic which out-
puts the value function Qt

tot for the joint action of all agents.
The relationships among agents are modeled as static and dy-
namic relational graphs. QRelation uses the Relational Mod-
ule (RM), which will be described later, to model the rela-
tionships. oti is fed into RM to obtain a key variable kti , which
encodes both the agent’s local observation and its relation-
ships. Then, the keys kt1, k

t
2, ..., k

t
n are fed into the attention

layer along with Qi and st to obtain Qt
tot.

3.3. Relational Module

The Relational Module (RM) uses the static and the dynamic
relational layer to model static and dynamic relationships, re-
spectively. In default, the local observations of agents are fed
into the dynamic relational layer, and then its output is used
as input for the static relational layer. Note that, the order of
the static and the dynamic relational layer can be switched
depending on the application scenarios, and multiple RM can
be stacked together.

3.3.1. Static Relations

QRelation assumes that static relations are predefined in
the form of a relational graph G which is defined as G =
(N , E , T ). N is the set of agents. ni ∈ N is an agent in
the graph. E is the set of edges. An edge eij denotes a static
relationship between agent ni and agent nj . T is the set of
types of static relationships. Each edge is associated with
one type t ∈ T . To model the static relations t between
agents, we use the Relational Graph Convolution Network
(RGCN) [21] as the implementation of static relation module
to capture agents’ static relationships. Specifically, RGCN
uses a distinct shared weight matrix for each type t, thus it
can capture each t well.

3.3.2. Dynamic Relations

The dynamic relations among agents emerge through agent
interaction, and change over the course of MARL. For ex-
ample, proximity-based relationships are a type of dynamic
relationships. If two agents are close, then a proximity-based
dynamic relation exists between the two agents. There are
other types of dynamic relationships. For example, an agent
may be listening to another agent.

QRelation uses the Graph Attention Network (GAT) [22]
as the implementation of the dynamic relational module.
First, for each agent, GAT calculates its neighboring agents’
attention weights with respect to it. Second, GAT multiplies
the weights with neighboring agents’ features. In the end,
the other agents’ features are represented as a sum over the
products. Given the key ki (e.g., wkoi), the query q (e.g.,



Fig. 1. The architecture of QRelation.

wqoj), the attention coefficients αi of the dynamic relational
module for agent i are defined as follows.

αi =
exp(f(q, ki))∑
j exp(f(q, kj))

. (1)

where f is a user-defined function.

3.4. Attention Layer and Value Function

After the Relational Graph Module, the local observation
ot1, o

t
2..., o

t
n are transformed into a set of hidden variables

h = kt1, k
t
2, ...k

t
n. kti contains the aggregated and focused

information for agent i from its neighboring agents. Thus,
kti contains more comprehensive features than oti. Similar to
[11, 16], QRelation adopts the self-attention mechanism to
estimate the impact of each agent i for the team. The attention
coefficient wt

i of agent i is calculated as follows.

wt
i =

exp(wa
kk

t
i · wa

ss
t)∑n

j=1 exp(w
a
kk

t
j · wa

ss
t)

(2)

where st is the state, Ws and Wk are weight matrices, and · is
the dot-product operation.

The value function Qt
tot is calculated as the sum between

the weighted sum of agent’s Q values and a state value V (s).
Qt

tot =
∑n

i=1 w
t
iQ

t
i + V (st), where V (st) ∈ R is a state

value function, which is obtained by feeding st through 2
fully-connected layers with Relu non-linearity.

3.5. Relation Regularization and Loss

In QRelation , the dynamic relational graph changes accord-
ing to the interaction of the agents. As many cooperative
MARL problems need consistent agent behaviors, we want
dynamic relationships in QRelation to be stable for a while,
even when the surrounding agents change.

The attention weights α of the dynamic relational layer
are the learned relational representations. Inspired by [23],
QRelation uses a relational graph regularization Lgnn to reg-
ulate the weights of the relational graph, to ensure that the

relationships at time step t + 1 do not differ too much from
last time step t. It is defined as follows.

Lgnn =

T∑
t=1

n∑
i=1

KL(αi
t||αi

t+1) (3)

where αi
t are the attention weights distribution of agent i at

time t used in Formula 1, and KL(||) is the KL divergence
distance.

The loss of QRelation consists of the TD error, the rela-
tional graph regularizer Lgnn. It is defined as follows.

L = Lmse + λ1Lgnn (4)

where Lmse is the TD error. QRelation is trained end-to-end
to minimize L in the same manner as DDQN.

4. EVALUATION

We evaluate QRelation using the StarCraft II Multi-Agent
Challenge benchmark (SMAC) [24]. The results show that
QRelation can obtain better results than 7 state-of-the-art ap-
proaches by virtue of using static and dynamic relationships.
Further, we conduct an ablation study which shows that com-
bining static and dynamic relationships are necessary, and the
relational regularizer Lgnn is useful.

4.1. StarCraft II benchmark

In the StarCraft MARL benchmark, several combat agents
controlled by learning policies fight against enemy bots. We
choose 2 super hard and 2 easy StarCraft II scenarios con-
sisting of different types and number of agents. They require
different strategies to win. As an example, in the MMM2 sce-
nario, there are agents types: Medivac, Marauder, and Ma-
rine. If the controlled agents defeat all the enemy bots in lim-
ited time, the episode is counted as won, otherwise lose.

4.2. Metric, Methods, and Configuration

The training procedure of all the methods is paused after ev-
ery 10,000 environment steps, and then we conduct 32 test



Fig. 2. The test won rate for the super-hard scenarios: MMM2
(Left) and 8m vs 9m (Right).

Fig. 3. The test won rate for the easy scenarios: MMM (Left)
and 2s3z (Right).

episodes to evaluate their performance in terms of Test Win
Rate. It is the percentage of won test episodes.

The state-of-the-art methods used for comparison are:
QMIX [6], CW QMIX [14], OW QMIX [14], QPlex [17],
DGN [23], QTRAN [8], COMA [7], and DMIX [18]. The
input and output dimensions of the relational module are
both 64, and each attention layer consists 4 attention heads.
Each experiment is repeated 5 times with independent runs.
Unless otherwise specified, the configuration of QRelation
is the same as QMIX [6]. The static relational information
is obtained from the type of StarCraft II agents (e.g., Ma-
rine and Medivac). And we consider distance-based dynamic
relational information only. If two agents are close, then a
dynamic relationship exists between them.

4.3. Results

The Test Win Rate of the scenarios are depicted in Figure 2
and Figure 3 (with 95% confidence interval). QRelation
achieves the best results for the two super-hard scenarios
(MMM2 and 8m vs 9m) and obtains close-to-optimal results
in the two easy scenarios (MMM and 2s3z). For the MMM2
scenario, the performance of QRelation is consistently better
than others. The win rate of QRelation is 0.85, whereas the
second and is achieved by QMIX (0.65) respectively. For the
8m vs 9m scenario, depicted in Figure 2 (Right), QRelation
and DMIX are the best performing methods, they can obtain
a win rate of 0.97. Note that the agent used in DMIX is dis-
tributional and rnn-based while other methods use the same
rnn-based agent. For the two easy scenarios, as shown in
Figure 3, QRelation can obtain close-to-optimal performance

Fig. 4. Impact of different relationship (Left) and loss (Right).

as other methods.

To study the impact of static and dynamic relations, we
consider the following ablations: S, D, and QRelation-. S is a
variation of QRelation which only considers static relations,
whereas D is an variant considers dynamic relations only. S
and D use one layer of static/dynamic relational layer, respec-
tively. QRelation- is an variation which do not use any rela-
tionships at all. As it is depicted in Figure 4 (Left). QRelation
obtains better performance than all these variations through
using both the static and dynamic relations. And all the meth-
ods considering relationships obtain better results than the one
which does not use any relationships (i.e., QRelation-).

To study the impact of relational regularizer, we intro-
duce another relational regularizer La. It considers each
agent’s relative importance to the team should be stable,
instead of changing radically. La restricts the attention co-
efficient wt

i in the attention layer (defined in Formula 2)
from changing too frequently. The loss La is defined as
La =

∑T
t=1KL(w

t||wt+1). Besides, we consider QRe-
lation’s variant Lmse which uses the TD loss only, variant
Lmse + La which uses the TD loss and La, and variant
Lmse + La + Lgnn considering all the three losses. QRe-
lation can be viewed as Lmse + Lgnn. As it is shown in
Figure 4 (Right), considering TD loss only (Lmse) achieves
the poorest performance, whereas the two relational regular-
izers (La and Lgnn)can improve the performances. Through
using the relational regularizer Lgnn, QRelation achieves the
best performance, and using the three losses Lmse, La, Lgnn

together do not lead to better results.

5. CONCLUSION

QRelation is a relation-based value function factorization ap-
proach for multi-agent reinforcement learning. It uses graph
neural networks to model both the static and the dynamic rela-
tional information, respectively. Thus, QRelation captures the
relation among agents well. We show that QRelation can per-
form better than state-of-the-art methods by modeling static
and dynamic relationships through experiments on StarCraft
II benchmarks.
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