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ABSTRACT

The communication among agents is important for Multi-
Agent Reinforcement Learning (MARL). In this work, we
propose GraphComm, a method makes use of the relation-
ships among agents for MARL communication. GraphComm
takes the explicit relations (e.g., agent types), which can be
provided through some knowledge background, into account
to better model the relationships among agents. Besides
explicit relations, GraphComm considers implicit relations,
which are formed by agent interactions. GraphComm use
Graph Neural Networks (GNNs) to model the relational in-
formation, and use GNNs to assist the learning of agent
communication. We show that GraphComm can obtain bet-
ter results than state-of-the-art methods on the challenging
StarCraft II unit micromanagement tasks through extensive
experimental evaluation.

1. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) problems,
where a group of agents with partial observable environment
must cooperate to achieve their common goal, have receive
much attention from the research community [1].

The communication among agents provides additional in-
formation by message passing. It enable the agents to obtain
better information around them. Researchers have proposed
various methods to learn to communicate. The attentional
communication model (ATOC) [2] enable agents to select and
communicate with each other; target communication [3] al-
lows agent transfer messages to targeted agents. Albeit these
communication methods can be efficient at some tasks, these
methods do not fully take into account the rich relational
information that naturally exists among agents. Thus, they
cannot capture agent relationships well, which leads to sub-
optimal performance for challenging tasks [4].

In Multi-Agent System (MAS), there exist many types of
relationships (e.g., healer-warrior). Communication through
these relationships can be effective. We propose to consider
both explicit and implicit relations simultaneously among
agents. Explicit relationships are explicitly described (or
predefined) relationships, which are obtained from some

Fig. 1. The Explicit (Left) and the Implicit (Right) Relation-
ship Graphs in StarCraft II scenarios. The color of an edge
indicates a distinct relationship.

knowledge background; they precisely define the relation-
ships among agents. For example, the alliance-enemy, the
hider-seeker, and the speaker-listener relationship. However,
using explicit relationships alone are not enough to capture
various mutual information in MAS. There are many implicit
relationships that are not explicitly described but exist in
MAS. Implicit relationships are formed through agent inter-
actions. For example, an agent could collide/chase another
agent, stand in front/back of another agent.

Figure 1 depicts two examples of relationships formed in
StarCraft II games. The left figure shows explicit relations
induced by agent types. There are 4 agents with 3 types: 1
Medivac, 1 Marauder, and 2 Marines. Agents of different
types are related to other agent types differently, and there
are 4 types of explicit relationships (e.g., Medivac-Marine,
Medivac-Marauder) in the figure. The right part of Figure 1
demonstrates the implicit relationships formed according to
distances between agents. Nearby agents are connected by
gray edges. The implicit relationships are dynamic. For ex-
ample, during a StarCraft combat, a Medivac agent may heal
or protect a Marine agent.

In this work, we propose GraphComm. It uses Graph
Neural Networks (GNNs) to model the relational information,
and use GNNs to assist the learning of agent communication
through back-propagation. Through extensive experiments,
we show that GraphComm can perform significantly better
than state-of-the-art methods on the challenging StarCraft II
unit micromanagement tasks by virtue of using the explicit



and implicit relationships for communication.

2. RELATED WORK

Multi-Agent communication has received much attention
from the research community [5, 6, 7]. Graphs have been
used as a communication mechanism for agent cooperation.
ATOC [8] uses the attention mechanism to select and com-
municate with others. DGN [9] and COMA-GAT [10] use
the Graph Attention Network (GAT) [11] as a communication
mechanism to enlarge the observation of agents. G2ANet [12]
uses hard-attention to filter irrelevant information and soft-
attention to focus on relevant information. DCG [13] uses
coordination graphs that coordinate the actions of agents
through message passing on graphs. Most of the method
use proximity-based relational graphs for message-passing
during agent execution. Different from them, GraphComm
agents use both the explicit and implicit relationships to com-
municate during execution.

Action-critic MARL methods [14, 15] use the signals
from critics to guide the optimization of actors. Value-based
approaches, such as VDN [16], QMIX [17] factorize the
value function Qtot into multiple local value function Qi.
Our work is orthogonal to these approaches.

3. BACKGROUND

The MARL scenarios we consider is cooperative, it can be
modeled as Decentralized Partially Observable Markov Deci-
sion Processes (Dec-POMDPs) [18]. For n agents, the Dec-
POMDP is defined as G.

G = 〈S, {Ai}ni=1, P, r, {Oi}ni=1, {σi}ni=1, n, γ〉.
The set of states are denoted by S. The set of actions of agent
i is represented by Ai, in this work, only discrete actions are
considered. at ∈ A := A1 × . . . × An denotes the joint
action of all agents. At a discrete time step t and state st,
after the joint action is issued, the next state st+1 ∈ S of
the environment is drawn from the transition function st+1 ∼
P (·|st,at). In cooperative MARL, agents must coordinate
and cooperate to achieve their common goal. All the agents
will receive a collaborative reward rt after the state transition
happens. Each agent can only observe a part of the environ-
ment oti ∈ Oi which is drawn from oti ∼ σi(·|st). γ ∈ [0, 1) is
the discount parameter. The agents seek to optimize the value
function Qtot(s, a) = Es0:∞,a0:∞ [

∑∞
t=0 γ

trt|s0 = s, a0 =
a]. In this work, Each agent can communicate with other
agents through predefined channel which is formed base on
relationships.

4. THE GRAPHCOMM METHOD

The relational information can be used in MARL communi-
cation to enable better cooperative agent behaviors. The rela-
tionships among agents are modeled as explicit and implicit
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Fig. 2. The architecture of GraphComm.

relational graphs. GraphComm uses GNN to model the ex-
plicit and implicit relational information among agents to ex-
change messages, thus benefiting the agent execution.

4.1. Architecture

GraphComm architecture is shown in Figure 2. The neural
architecture of the agent consists of a multi perception layer
(MLP) layer that encodes the local observation (oti), a Gate
Recurrent Layer (GRU) [19] layer, which encodes the history
of local action-observation. Further, the agents exchange their
messages with Graph Neural Network through the Relational
Graph Module (RGM). It consists of the Implicit Relational
Layer and the Explicit Relational Layer. In the end, a fully-
connected layer is used to output Qt

i. All the agents share the
same set of parameters.

The local value function Qt
i are fed into a mixing network

(i.e., [17]) to compute a global value functionQt
tot for central-

ized training. During the execution, agent i selects its action
ui greedy according to Qi(o

t
i, u), and the mixing network is

removed.

4.2. Relational Graph Module

GraphComm models a Multi-Agent System (MAS) as a
graph. An agent is a node of the graph; the edge of the graph
is formed based on the relational information among agents.
For example, an edge between two agents can be created
if they are within each other’s observation. The Relational
Graph Module (RGM) uses the explicit and the implicit re-
lational layer to model explicit and implicit relationships,
respectively.

4.2.1. Explicit Relations

We consider explicit relations that are predefined in the form
of a relational graph G which is defined as G = (V, E ,R). V
is the set of nodes in the graph. vi ∈ V is a node in the graph.
It could be agents or other entities in the environment. E is the
set of edges. An edge eij from vi to vj indicates a relationship



between them. R is the set of types of relationships. There
exists an mapping function ψ : E → R which maps an edge
eij to its relationship type r ∈ R.

The relational graph could be provided by background
knowledge or learned from previous MARL. We consider
explicit relationships that are consistent over the course of
MARL. For example, as it is shown in Figure 1 (Left), the
Medivac agent 1 can heal the Marine agent 2. e12 from 1
to 2 represents the can-heal relationship. and e21 from 2 to
1 indicates the can-be-healed relationship. The healing re-
lationships are consistent over the course of the StarCraft II
scenario.

4.2.2. Implicit Relations

We consider implicit relations that are formed through agent
interaction. They are not provided to MARL beforehand, and
the relationships emerge during the course of MARL.

For example, the proximity relationship could be a type
of implicit relationship if the locations of agents are dynamic
or unknown in advance. For proximity relationships, we mea-
sure the distance between the positions of agents in Euclidean
space. If the distance between two agents is smaller than
a predefined threshold, then a proximity relation exists be-
tween the two agents. Other types of implicit relationships
may emerge. For example, a hunter agent may chase a prey
agent. A hunter agent may assist another hunter to capture
prey. A warrior agent may follow or cover another agent.

We build an implicit relationship graph base on the prox-
imity relational graph. That is, two agents are considered hav-
ing an implicit relationship only if they are close enough. In
this work, we consider a dynamic MARL that agents can dis-
appear in the middle of the tasks. If an agent disappears, then
all the edges connected with the agents are removed.

4.2.3. Explicit Relational Layer

For explicit relational graphs, GraphComm requires that the
knowledge across edge type (i.e., relationship) be shared. We
find that the Relation Graph Convolution Network (RGCN),
which uses a distinct shared function to compute for each
edge type, satisfies our requirement. Thus, it is adopted to
implement the explicit relational layer.

Given set of input to the explicit relational layer: h(l) =

h
(l)
1 , h

(l)
2 , ...h

(l)
n , h

(l)
i ∈ RF , where h(l)i is the hidden states

of agent i in the lth layer. For example, it could be the lo-
cal observation oti of agent i, or the transformed hidden vari-
able of agent i from previous layer. This layer outputs a
set of new agent features h(l+1) = h

(l+1)
1 , h

(l+1)
2 , ...h

(l+1)
n .

h
(l+1)
i ∈ RF ′

. The transformation of h(l)i to h(l+1)
i is defined

as follows.

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

cir
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 (1)

r ∈ R represents the type of an explicit relationship,R is the
set of types of relationships. N r

i is the set of neighbors which
connect i with relation r, cir = |N r

i |, W
(l)
r is a type-specific

transformation matrix. It is shared across relationships of the
same type r. W (l)

0 transforms the hidden features of agent i.
Overall, the explicit relational layer aggregates neighboring
agents’ hidden features into a normalized sum which consider
different explicit relations.

4.2.4. Implicit Relational Layer

To model the implicit relational graph, GraphComm uses the
Graph Attention Network (GAT) [11] to implement the im-
plicit relational layer. GAT aggregates nearby agents’ infor-
mation via attending over neighboring agents’ features. The
output of a GAT layer is defined as follows.

h
(l+1)
i = σ

∑
j∈Ni

αijh
(l)
j

 (2)

where h(l)j is the output from previous layer, h(l+1)
i is the out-

put of the GAT layer. αij is the attention weight between hi
and hj . W is a vector. Further, we use multi-head attention
to jointly attend different representation subspace to extract
useful relational representations.

4.3. Training

The loss of s the TD error Lmse which is defined as follows.

Lmse =

b∑
i=1

(yitot −Qtot(s
i, ai; θ))2 (3)

where b is the batch size, ai is the joint action, yitot = r +
γmaxaQtot(s

i+1, a; θ−), θ− are the parameters of the target
network. The training process is the same as DDQN [20].

5. EVALUATION

We conduct experiments on the StarCraft II Multi-Agent
Challenge benchmark (SMAC) [21]. The results show that
GraphComm can obtain better results than 8 state-of-the-art
approaches by virtue of using explicit and implicit relation-
ships.

5.1. StarCraft II benchmark

In a SMAC scenario, a group of agents controlled by learning
policies fights against enemies controlled by in-game bots.
The scenario could be homogeneous with the same type of
agents, or heterogeneous with multiple types of agents. Each
agent has a circular view around it and can receive local ob-
servation around it. It can move and attack enemies or heal
teammates. In each episode, if the agents eliminated all the



GraphComm QMIX QAtten VDN QTRAN DGN IQL COMA COMA-GAT

MMM2 0.83 0.65 0.49 0.05 0.01 0.13 0.03 0.00 0.00
8m vs 9m 0.90 0.71 0.84 0.83 0.47 0.39 0.24 0.03 0.03
3s5z vs 3s6z 0.08 0.04 0.03 0.01 0.00 0.00 0.00 0.00 0.00
6h vs 8z 0.09 0.04 0.04 0.00 0.00 0.00 0.00 0.00 0.00
3s5z 0.94 0.90 0.89 0.48 0.03 0.03 0.06 0.01 0.01
MMM 0.99 0.97 0.99 0.98 0.45 0.78 0.63 0.39 0.25

Table 1. The Test Win Rate of all methods.

Fig. 3. The test won rate for the MMM2 (Left) and the
8m vs 9m (Right) scenarios.

enemies within a limited time, the game episode is counted as
won, otherwise loss.

We choose 6 StarCraft II scenarios consisting of different
types and number of agents, and require different strategies to
win. For example, there are 3 types of agents in the MMM2
and MMM scenarios: Marine, Marauder, and Medivac. Ma-
rine and Marauder are ranged-attack units; Medivac is a doc-
tor unit that can heal Marine and Marauder. The agents in
8m vs 9m scenario are Marine.

5.2. Metric, Methods, and Configuration

The training procedure is paused after every 10,000 environ-
ment steps, and then 32 test episodes are conducted to evalu-
ate the performance in terms of Test Win Rate. Test Win Rate
is the percentage of games won among the test episodes.

The work used for comparison are: QMIX [17], QAt-
ten [22], VDN [16], QTRAN [4], DGN [9], IQL [23],
COMA [15], COMA-GAT [10]. The input and output di-
mensions of the relational graph module are both 64. The
number of attention heads is 4. To strike a balance between
computational requirement and statistical significance, each
experiment is repeated 10 times with different seeds. Other-
wise specified, the configuration of GraphComm is the same
as QMIX [17].

We provide GraphComm with explicit relational graphs
based on the type of agents. For agents with the type A (e.g.,
Marine), edges with the relation AA is created among these
agents. For an agent with type A and another agent with
type B, an edge with the relation AB is created between the

two agents. For scenarios with homogeneous type of agents
(8m vs 9m, 6h vs 8z), we set agent 1 as type A, whereas
other agents as type B. Then, the explicit relational graphs
are created as previously described. The implicit relational
graph is built based on agents’ relative distance. If the dis-
tance between two agents is smaller than a threshold, then an
edge (implicit relationships) is created between them. Exam-
ples of the relational graph are shown in Figure 1.

5.3. Results

The final mean results (maximal mean across the testing
episodes within the last 250k steps of training) are shown in
Table 1, and part of the training results are depicted in Fig-
ure 3 (with 95% confidence interval). GraphComm achieves
the best results for all the scenarios.

For the MMM2 scenario, the performance of Graph-
Comm is consistently better than others. The win rate of
GraphComm is 0.83, whereas the second and the third-best
result is achieved by QMIX (0.65) and QAtten (0.49), re-
spectively. For the 8m vs 9m scenario, depicted in Figure 3
(Right), GraphComm is the best performing method, it can
obtain a win rate of 0.90, while the second-best algorithm
(QAtten) is 0.84.

For the 3s5z vs 3s6z, 6h vs 8z, 3s5z, MMM scenarios,
whose results are shown in Table 1, GraphComm can obtain
the best performance. The results indicate that considering
both the explicit and implicit relationship for MARL commu-
nication can improve the performance of MARL.

6. CONCLUSION

In this work, we propose GraphComm, a method uses both
the explicit and the implicit relationships among the agents for
MARL communication. Agents exchange messages among
other through the communication channel based on rela-
tionships. And GraphComm models the relationships using
Graph Neural Networks. Through extensive experiments,
we show that GraphComm can obtain better results than
state-of-the-art methods.
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de Witt, Gregory Farquhar, Jakob N. Foerster, and Shi-
mon Whiteson, “QMIX: monotonic value function fac-
torisation for deep multi-agent reinforcement learning,”
in ICML, 2018, vol. 80, pp. 4292–4301.

[18] Frans A. Oliehoek and Christopher Amato, A Con-
cise Introduction to Decentralized POMDPs, Springer
Briefs in Intelligent Systems. 2016.

[19] KyungHyun Cho, Bart van Merrienboer, Dzmitry Bah-
danau, and Yoshua Bengio, “On the properties of neu-
ral machine translation: Encoder-decoder approaches,”
EMNLP, 2014.

[20] Hado van Hasselt, Arthur Guez, and David Silver,
“Deep reinforcement learning with double q-learning,”
in AAAI, 2016, pp. 2094–2100.

[21] Mikayel Samvelyan, Tabish Rashid, Christian Schröder
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