
Jellyfish: Locality-Sensitive Subflow Sketching
Yongquan Fu1,5, Lun An2,5,∗, Siqi Shen3,∗, Kai Chen4,5,∗, Pere Barlet-Ros6

1 Science and Technology Laboratory of Parallel and Distributed Processing,
College of Computer Science, National University of Defense Technology, Changsha, China

2School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing, China
3School of Informatics, Xiamen University, Xiamen, China

4 iSING Lab, Hong Kong University of Science and Technology, China
5Peng Cheng Laboratory, Shenzhen, China

6Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract—To cope with increasing network rates and massive
traffic volumes, sketch-based methods have been extensively
studied to trade accuracy for memory scalability and storage
cost. However, sketches are sensitive to hash collisions due to
skewed keys in real world environment, and need complicated
performance control for line-rate packet streams.

We present Jellyfish, a locality-sensitive sketching framework
to address these issues. Jellyfish goes beyond network flow-based
sketching towards fragments of network flows called subflows.
First, Jellyfish splits consecutive packets from each network flow
to subflow records, which not only reduces the rate contention
but also provides intermediate subflow representations in form of
truncated counters. Next, Jellyfish maps similar subflow records
to the same bucket array and merges those from the same
network flow to reconstruct the network-flow level counters. Real-
world trace-driven experiments show that Jellyfish reduces the
average estimation errors by up to six orders of magnitude for
per-flow queries, by six orders of magnitude for entropy queries,
and up to ten times for heavy-hitter queries.

Index Terms—subflow, sketch, hash collision, clustering, heavy
hitter

I. INTRODUCTION

Network measurement is of paramount importance for traf-
fic engineering, network diagnosis, network forensics, and in-
trusion detection and prevention in clouds and data centers [1],
[2], [3], [4], [5], [6], [7], [8], which needs diverse measurement
tasks, such as delay, flow size estimation, flow distribution, and
heavy hitter detection. Network-flow monitoring is challenging
due to the ever-increasing line rates, massive traffic volumes,
and large number of active flows [9], [6].

Traffic analysis tasks require advanced data structures and
algorithms. Many space- and time-efficient approaches have
been proposed in the literature, e.g., traffic sampling (e.g.,
Netflow, sflow), traffic counting [10], [11], [12], [13], traffic
sketching [14], [15], [16], [17], [18], [19], [20], [21], [22].

Traffic sketching is an increasingly popular method com-
pared to traffic sampling and traffic counting, due to their
better trade-off between space requirements and capability of

∗ Corresponding Author: Siqi Shen, Lun An, Kai Chen.
This work was sponsored in part by National Key R&D Program of China
under Grant No. 2018YFB0204300, and the National Natural Science Foun-
dation of China (NSFC) under Grant No. 61972409, 61602500, in part by
Hong Kong RGC GRF-16215119, and the Spanish MINECO under contract
TEC2017-90034-C2-1-R (ALLIANCE).

ingesting all packet records to a constant-size data structure.
The sketch maps each incoming packet to a bucket indexed by
the hash of the corresponding network flow identifier. Thus all
packets from the same network flow would be mapped to the
same bucket, which approximately preserves the network-flow
counter.

Due to the hashing collisions caused by mapping multiple
keys to the same sketch entries, the sketch-based network
monitoring process incurs a high degree of approximation
errors. Hash collisions are due to the randomness of the
hash functions, thus it is impossible to avoid them. Moreover,
the probability of hash collisions increases as more keys are
hashed into the fixed-size data structure.

To reduce approximation errors, the common approach is to
either increment the size of the sketch structure, or to maintain
multiple independent sketching instances for the purpose of
choosing the sketch entries with the fewest hash collisions.
Yet, real-world traffic distributions are usually non-uniform,
so that the approximation errors are likely to be amplified by
the long tails of network-flow distributions.

Most severe approximation errors are mainly caused by the
traffic-distribution-oblivious hashing process, thus a natural
question is whether we can reduce the approximation errors
by replacing key-based hashing process with locality-sensitive
methods. Several approaches [23], [24] proposed to separate
large ones from the rest to reduce the peak estimation error for
the rest. LSS [9] proposed to map similar network counters
to the same bucket array in order to reduce the approximation
error. Unfortunately, LSS needs to keep all active network
flows in the memory, in order to update the mapping of
network flows to the nearest clusters in real time as the
network flow counters keep increasing, which is challenging
with respect to large-scale network traffic.

This paper exploits the subflow, an aggregated record for
a subset of packets from the same network flow, to build
Jellyfish, a locality-sensitive sketching framework. Jellyfish
directly maps similar subflow counters to the same bucket
array and estimates each network-flow counter by the sum
of estimated subflow counters from the same network flow.

The granularity of the subflow can be adjusted with a
flexible threshold parameter that bounds the maximal sub-

flow counter. Reducing the thresholds smooths the subflow
distributions, but increases the number of subflow records for
reconstructing the network-flow level counters. As a result, we
can set suitable subflow thresholds for different network-flow
distributions.

Replacing network-flow level sketching with subflow-level
sketching is non-trivial. A strawman approach for subflow-
based sketching is to use conventional sketching methods
such as count-min [25] and count-sketch [26] methods. Our
experiments in Subsection III-C show that these sketching
methods still incur a high degree of approximation errors, since
truncated subflow counters are still non-uniform. As a result,
subflow sketching requires locality-sensitive methods.

To be locality-sensitive for online subflow counters, Jellyfish
directly clusters similar subflow records to the same bucket
array, and postpones the reconstruction of the network flow
counter during the query process. Jellyfish generates subflow
records from packet streams with a high-performance hash
table, then clusters similar subflow counters to the same bucket
array and reconstructs the network-flow counter by merging
the queried results of subflow records from this network flow.

We perform extensive evaluation in Section V. Real-world
trace-driven experiments show that Jellyfish outperforms state-
of-the-art sketching methods, with up to 106X reduction in
average relative errors for per-flow queries, 106X reduction
in average relative errors for entropy queries, and up to 10X
reduction in average F1 scores for heavy-hitter queries.

We summarize our contributions as follows: (i) We present
a locality-sensitive subflow sketching method Jellyfish. (ii) We
present a subflow based network monitoring framework that
generates tunable subflow records from packet streams and
decouples the sketch structure from the ingestion components
to adapt it to the line rates. (iii) We conduct extensive ex-
periments with real-world data sets to show that the proposed
sketch method obtains accurate and robust estimation results.

The rest of the paper is organized as follows. Sec. II sum-
marizes related studies on sketch-based network monitoring
methods and provides the problem model on the sketch-based
network flow monitoring process. Sec. III next presents a
practical locality-sensitive sketch. Sec. IV presents the im-
plementation details. Sec. V conducts extensive performance
evaluation with real-world datasets. We finally conclude in
Sec. VI.

II. BACKGROUND AND RELATED WORK

We present the background for the network monitoring
process, and the related work that are most related with us.
We next analyze the challenges of the sketching approaches.

A. Background

A network flow is typically represented as a key-value pair,
where the key is defined as the composition of several essential
packet-header fields, and the value is defined as the flow’s
current statistics, e.g., number of packets or flow bytes.

For each incoming packet, a sketch-based monitor inspects
the packet header to extract the key and calculate the packet’s

value, then inserts this record to the sketch data structure.
A sketch-based monitoring application typically comprises an
ingestion component that intercepts incoming packets from the
physical network interface and generates key-value input for
the sketch, a sketching component that feeds the key-value
input to a sketch structure that approximates these key-value
pairs with one or multiple hash based bucket arrays.

There are two schemes for network monitoring on network
flows. For the sequence based sliding window, each interval
keeps at most N flow records, and a new interval is generated
afterwards; while for a time based window, each interval
records the packets during a fixed time period, and a new
interval is created after the interval ends.

B. Related Work

To reduce the approximation error, a popular trick is to
choose the least affected bucket from multiple copies of
independent bucket arrays as the estimator. UnivMon [18]
uses an array of sketch counters to meet generic monitoring
tasks. SketchVisor [27] augments the sketch with a fast-path
ingestion path to tolerate bursty traffic. ElasticSketch [23]
keeps heavy hitters separately with a hash table, and puts the
rest of items to a count-min sketch. Thus it is less sensitive to
heavy hitters compared to prior sketch structures [26], [25],
[28]. SketchLearn [24] separates large flows from the rest
based on inferred flow distributions, which incurs additional
processing delay for each packet. Nitrosketch [29] reduces
the insertion frequency to relieve the processing delay, but
introduces uncertainty on the sketching results. OmniMon [30]
seeks full accuracy and resource efficiency over collaborated
network entities. LSS[9] applies a cluster-preserving approach
to reduce the estimation error, by guaranteeing that each
network flow is always mapped to the closest cluster. Thus, to
process packet streams like traditional synopsis, LSS maintains
an in-memory cache for active network flows and dynamically
adjusts the clusters for these network flows. Our work dramat-
ically improves the prediction accuracy and memory efficiency
using a subflow clustering based sketch method, which avoids
the need of adjusting the buckets for active network flows.

C. Sketch Challenges

A sketch-based streaming should meet monitoring accuracy
and performance needs for network-wide streams in cloud data
center networks.

(i) Approximation error: Sketch-based methods incur a
degree of approximation errors.

We give an empirical test of the estimation error of count-
min method [25] and count-sketch method [26] with real-
world trace data set, introduced in subsection V-A. Figure 1
plots the relative error of queried items with respect to the
number of items hashed into the corresponding bucket. We
see that even a relatively small number of hash collisions
significantly degrade the prediction accuracy. As a result, we
need an elegant approach to reduce the variance of the keys
within each bucket array, while preserving the simplicity of
sketching operations.

8 16 24 32

Noisy counts

0

100

200
R

e
la

ti
v
e
 E

rr
o
r

(a) Count-sketch method [26]

8 16 24 32

Noisy counts

0

100

200

R
e
la

ti
v
e
 E

rr
o
r

(b) Count-sketch method [25]

Fig. 1. The average and the standard deviation of the relative errors of queried
items with respect to the number of items inserted into the corresponding
bucket on the CAIDA data set. We use three bucket arrays for a sketch, and
set the ratio between the number of buckets and the number of network flows
to 0.05.

Generally, we can quantify the expected number of noisy
buckets that have hash collisions. Assume that each key is
mapped to a bucket in each bank uniformly at random with
the hash function. As Lemma 1 shows that, the probability of
hash collisions increases fast with decreasing ratios between
the number of buckets and the number of inserted keys.

Lemma 1. Let m denote the number of buckets, N the number
of unique keys. For a sketch with c banks of bucket arrays,
where each bucket array is of size m

c , the expected percent of
noisy buckets is 1− e−cN/m − cN

m · e
−c(N−1)/m.

Proof. For a sketch with one bucket array that consists
of m buckets, the expected number of keys per bucket
amounts to N

m . The expected number of empty buckets
is:
∑
i

(
1− 1

m

)N
= m

(
1− 1

m

)N ≈ me−N/m. Similarly,
the expected number of buckets with one key amounts to:∑
i

(
N
1

)(
1
m

)(
1− 1

m

)N−1 ≈ Ne−(N−1)/m. As a result, the

expected percent of buckets that contain at least two keys is(
m−me−N/m −Ne−(N−1)/m

)
· 1m . The expected percent of

noisy buckets is 1− e−N/m − N
m · e

−(N−1)/m.
For a sketch with c banks of bucket arrays, where each

bucket array is of size m
c , each bucket array still receives

N keys. Thus following the same derivation, we have that
the corresponding expected percent of noisy buckets is 1 −
e−cN/m − cN

m · e
−c(N−1)/m.

(ii) Sketching efficiency: Sketch-based methods are typi-
cally coupled with the packet rate, not the flow rate. Although
a sketch only produces flow-level estimation results, existing
monitoring applications feed packet-granularity streams to the
sketch. The need of coping with line-rate packets increases
the resource contentions of the sketch structure with colocated
deployed systems [27]. As the network is getting faster, more
packets must be inspected for the same amount of time, which
implies that the sketch’s space and time complexity must be
tightly controlled. The packet rate is typically much smaller
than the network-flow rate. For example, CAIDA reported that
on 11-15, 2018, the mean transmission rates of two directions
for the equinix path [31] reach at 620.41 ×103, and 1.56 ×106

Fig. 2. Overall framework of Jellyfish. Step (1): Three network flows denoted
as id1, id2 and id3 are divided to subflow records, each of which consists of
four subflow records. The sizes of network flows denoted as id1, id2 and id3
equal the sums of the corresponding subflow records belonged to the same
network flow, which are 139, 147 and 137, respectively. Step (2): Subflow
records are clustered based on a clustering model (12, 34, 76). Each subflow
record is mapped to the bucket array indexed by the nearest cluster center.
Next, a bucket is chosen from this bucket array based on the hash of the
subflow identifier with a hash function. Finally, the sum field of this bucket is
increased by the incoming subflow record, and the count field of this bucket is
incremented by one. Step (3): The membership of subflows are kept for query
purpose. Step (4): Three network flows are estimated based on the sum of
queried results of the corresponding subflow records. The estimation results
for id1, id2 and id3 are 138.5, 154 and 130.5, respectively.

packets per second, respectively; while the number of flows
per second were just 31.80 ×103 and 91.02 ×103, respectively.

This paper deals with the sketching inefficiency and the
approximation errors with a subflow sketching framework,
which goes beyond network flow-based sketching towards
fragments of network flows.

III. JELLYFISH: SUBFLOW SKETCHING

Having presented the challenges of existing sketching meth-
ods, we next present a locality-sensitive subflow sketch called
Jellyfish.

A. Overview

Figure 2 shows the overall framework of the Jellyfish
based network monitoring process. Jellyfish generates subflow
records by aggregating the counters of a subset of consecutive
packets from the same network flow. Next, Jellyfish clusters
similar subflow records to bucket arrays with respect to an
online subflow-clustering model. Specifically, Jellyfish puts
each subflow record into a bucket array indexed by the closest
cluster center towards this record. Next, Jellyfish selects a
random bucket from this bucket array, by hashing the subflow
key with one hash function, and accumulates the subflow
counter to this bucket. Finally, Jellyfish reconstructs the coun-
ters for each network flow by estimating each subflow record
belonging to this network flow and merging those to the final
estimation result.

From Figure 2, we see that the approximation results closely
match the original network flow counters. Moreover, Jellyfish
does not need an in-memory cache of historical samples, or a
real-time update policy to dynamically adjust the clustering
positions of evolving network flow counters. We present

Fig. 3. Key functions in a subflow based network-monitoring architecture.

implementation details of the subflow clustering model in Sec.
IV.

Figure 3 summarizes key functions in the subflow-based
network monitoring process with ingestion, membership, in-
sertion and query functions. The ingestion function produces
subflow records. The membership function keeps the mapping
of subflow records to bucket arrays. The insertion function
inserts subflow records to bucket arrays. Finally, the query
function enables the query over network flows.

In the following, we first present ingestion and membership
functions for subflow streams, and then present strawman
approaches based on popular sketch methods. Next, we present
the insertion and query operations. Finally, we present sketch-
ing applications and the performance analysis.

B. Subflow Ingestion and Membership

1) Subflow Stream: As long as a subflow’s accumulated
counter exceeds a pre-defined threshold τ (128 by default)
or a maximal waiting period expires, we evict this subflow
immediately from the hash table and put it to a message bus.
As a result, the subflow record’s counter is at most τ . The
threshold τ is adjustable to account for the distribution.

Due to the randomness of the ingestion function, multiple
records may have the same network-flow identifier, since large
network flows are captured in different records by the ingestion
function.

2) Subflow Membership: The membership function extracts
the network-flow identifiers from the ingestion functions and
stores them to a persistent membership data structure.

To avoid keeping an in-memory cache to remember each
network flow, we account for each subflow record with a
simple schema. Specifically, we denote each subflow record
as a distinct subflow record, by appending a monotonically-
ascending index to the original network-flow record. Thus,
each subflow record now has a distinct representation: for
a network-flow identifier x, the subflow identifier is of the
form: recordID(x) = “(x, Index(x))”, where Index(x) returns
a monotonically-increasing index for the identifier x.

First, we approximately keep the set of subflow records by
attaching a Cuckoo filter to each bucket array. The Cuckoo
filter inserts subflow records based on cuckoo hashing, sup-
ports efficient insertion and deletion of items, and is shown to
be more efficient than the Bloom filter at low false positives
[32], [33], [34]. Multiple subflow records may be mapped to
the same slot in the Cuckoo filter, as we would like to reduce

the storage cost at the expense of introducing a degree of false
positives.

Second, we track the cardinality of subflow records based
on a Cuckoo filter. This subflow tracker keeps an integer-
numbered counter fs, which monotonically counts the number
of subflow records for the same network flow x, i.e., the
cardinality of the subflow records. Suppose that the cardinality
field fs amounts to three for a network-flow x, we immediately
know that we have inserted three records to the Jellyfish with
keys “(x, 1)”, “(x, 2)”, “(x, 3)”. Thus fs increases by one for
each new record. The cardinality field fs just adds four-bytes
storage to the entry.

The storage of subflow membership may use more space-
optimized data structures, such as the count-min sketch, at the
cost of introducing a degree of approximation errors for the
subflow membership.

C. Limitations of Strawman Approach

Having presented the subflow stream, a strawman approach
to improve the prediction accuracy would be to map subflow
records to the sketch and aggregate the subflow estimations to
reconstruct the network-flow level estimators. In this subsec-
tion, we illustrate with a real example why this approach does
not work.

We test this hypothesis with two well-known sketch meth-
ods count-min (CM) [25] or count-sketch (CS) [26]. Figure 4
plots the average relative error as a function of the subflow
threshold τ for CS and CM on two real-world data sets
introduced in Subsection V-A. Compared to Figure 6 without
the subflow stream, we see that this strawman approach does
not decrement the relative errors for CS and CM, since peak
subflow counters still increment the relative errors under hash
collisions, and the sum of subflow estimations further amplifies
the overall estimation. Further, the relative error of the CS
sketch increases quickly as we increment the threshold τ .
Since CS chooses the median of the estimation for each
subflow record, which are sensitive to enlarging peak subflow
counters. While the relative error of the CM sketch decreases
with increasing subflow thresholds, since a CM sketch always
chooses the minimum of the estimation for each subflow
record, which is less sensitive to thresholds.

In summary, the proposed strawman approach does not
improve the query performance due to the hash collisions of
subflow counters. We next present a subflow clustering based
sketch to resolve this issue.

D. Jellyfish Sketch

1) Physical Structure: The storage of Jellyfish is comprised
of a number k of bucket arrays for subflow clustering. A bucket
array consists of a number of buckets, where each bucket has
two fields: (i) A sum field that records the sum of subflow
values; (ii) A count filed that records the number of subflow
records inserted to this bucket.

2) Insert: Jellyfish maps each subflow record (x, v) to
the nearest cluster center with respect to v. We present the
insertion process in Algorithm 1. We select the bucket array

32 64 128 256 512 1024

Threshold

0

200

400

600

800

1000

R
E

CS

CM

(a) CAIDA

32 64 128 256 512 1024

Threshold

0

500

1000

1500

2000

2500

R
E

CS

CM

(b) MAWI

Fig. 4. The average and the 95-th confidence intervals of the relative errors
for the per-flow query as we change the threshold τ for CS and CM methods.
The sketch is of size 5 KB. The x-axis is plotted in the logarithmic scale.

Algorithm 1: Insert operation on the Jellyfish.
1 Insert(x, v)

input : Network-flow identifier x, subflow counter v.
2 Index(x) ← the cardinality field fs of the key x in the subflow

tracker, incrementing fs by one;
3 Generate the key κ = (x, Index(x));
4 Find the bucket array index iκ = argmini‖v − µi‖ to the

nearest cluster center;
5 Update the bucket indexed at h (κ): Iiκ [h (κ)] .sum+ = v,

and Iiκ [h (κ)] .count +=1;
6 Insert κ to the iκ-th Cuckoo filter;

Algorithm 2: Query operation on the Jellyfish.
1 Query(x)

input : Network-flow identifier x.
output: Network-flow counter v.

2 Obtain the cardinality field fs (denoted as xs) of the key x
from the subflow tracker;

3 SumCounter = 0;
4 for j = 1→ xs do
5 Generate the key κ = (x, j);
6 Obtain the bucket-array index iκ for κ in the bank of

Cuckoo filters;
7 SumCounter + = Iiκ [h(κ)].sum

Iiκ [h(κ)].count
;

8 return SumCounter;

corresponding to the cluster index of the incoming record x,
then we find a bucket in this bucket array with the hash of the
key κ = recordID(x), and increment the counter of the mapped
bucket by the hash of the key κ with the subflow counter v:
sum = sum + v, and count = count + 1.

Complexity: During the insertion phase, Jellyfish avoids the
maintenance of the volatile network-flow counters in memory,
and does not need to adjust the mapping between network
flows and the clustering model as well as the bucket arrays.
The downside of these benefits, is that Jellyfish needs to save
the subflow membership instead of the network-flow mem-
bership. We need one Cuckoo query to obtain the cardinality
of the subflow records fs and increment it by one, then we
need one hashing evaluation to locate a bucket in a single
bucket array. Finally, we need to insert the subflow key to the
corresponding Cuckoo filter associated with this bucket array
for the approximate membership.

3) Query: We next present the query process in Algorithm
2. For a network-flow identifier x, we first query the cardinality
field fs for key x from the Cuckoo filters, then we construct
the set of keys KEY s(x): “(x, 1)”, “(x, 2)”, . . . , “(x, fs)”.
Next, for each key y in KEY s(x), we locate the index of
the bucket array by querying the Cuckoo filter associated
with each bucket array. Next, we select the bucket in the
corresponding bucket array with the hash of the key, and return
the division sum

count as the approximate counter for this key y.
Finally, we calculate the sum of approximate counters for each
key in KEY s(x), and return this number as the counter for
the network flow x.

Complexity: During the query phase, we need one Cuckoo
query to obtain the cardinality field fs of this network flow,
then we obtain the index for each of the key by querying the
bank of the Cuckoo filters. The query time is proportional to
the cardinality number of subflow records. As the query phase
is not in the critical path of the network-monitoring applica-
tion, the speed of the query phase is much less important than
that of the insertion phase.

E. Sketching Applications

The query function performs monitoring queries on sketches
from the sketching function with network-flow identifiers from
the membership function. Typical queries include: (a) Per-
flow frequency and entropy query. They track the traffic
volume of each distinct flow, or count the flow bytes. To
query the size distribution of each inserted flow, we iteratively
obtain approximation results with identifiers of inserted flows,
then we build a list of approximated flow sizes as the flow
size distribution. Similarly, we derive the entropy metric as
the frequency distribution of approximated flow sizes. (b)
Heavy hitters. It finds top-K flows ingesting the most traffic
volumes. For a given heavy-hitter detection threshold, we
obtain approximated values of inserted flows from the sketch,
and select those exceeding the threshold as heavy hitters.
Based on heavy hitters, we can also find flows spanning
multiple windows that fluctuate beyond a predefined threshold,
i.e., the heavy changes.

F. Theoretical Analysis

Having presented the Jellyfish method, we next bound the
accuracy of Jellyfish towards the expectation of the ground-
truth counter of each network flow. As shown in Theorem
1, the estimated counter just deviates the expectation of
the ground-truth counter within a short interval, which is
proportional to the number of subflow records of each network
flow.

Theorem 1. Suppose that a sequence of independently identi-
cally distribution (iid) subflow records are inserted to a bucket
array with m buckets, with expectation φ and variance σ2. Let
the estimated counters of a list of network-flow identifiers S
be represented as X . Assume that the l-th key is mapped to
the j-th bucket. Let Query(Xl) denote the estimator of the
ground-truth counters Xl for the l-th network flow in S. Let

fs(Xl) denote the cardinality number of subflow records for
network-flow Xl. Then the Jellyfish estimator satisfies that

Pr (|Query(Xl)− E [Xl]| ≥ fs(Xl)w) ≤
τ2

w2
, w > 0 (1)

Proof. Let nj denote the number of subflow records inserted
to the j-th bucket. For a bucket j, let the subflow records
mapped to this bucket be represented as

{
Z(j)

}
. Let Yj =∑

z Z
(j)(z)

nj
denote the average of the j-th bucket.

(i) Expectation. Due to the iid distribution of subflow
records, the expectation of the variable Z satisfies that E [Z] =
φ, thus the expectation of the variable Yj amounts to the
expectation of the variables:

E [Yj] =
1

nj
E

[∑
i

Z(j)

]
=

1

nj

∑
i

E
[
Z(j)

]
= φ (2)

(ii) Variance. Next, the variance of Yj from its expectation
can be calculated as follows:

V ar [Yj] = E
[
(Yj − φ)2

]
= E

[(∑
i Z

(j)

nj
− φ

)2]
≤

E
[

1
nj2

(∑
i

(
Z(j) − φ

))2] ≤ 1
nj2
× n2jτ2 = τ2,

since the difference of subflow records to the average φ is
always bounded by the subflow threshold τ for any subflow
key z.

(iii) Bound. By Chebyshev’s inequality, we bound the range
of Yj as :

Pr (|Yj − φ| ≥ w) ≤
V ar [Yj]

w2
≤ τ2

w2
(3)

(iv) Network flow. Given any network-flow identifier Xl, we
see that the expectation of Xl can be represented as the sum
of counters with the same network-flow identifier: E [Xl] =

E
[∑

FlowID(z)=Xl
Z(j)(z)

]
, where FlowID(z) denotes the

network-flow identifier of the subflow record z. We see that
E [Xl] =

∑
FlowID(z)=Xl

φ = fs(Xl)φ.
Thus we have
Pr (|Query(Xl)− E [Xl]| ≥ fs(Xl)w) =
Pr (|Query(Xl)− fs(Xl)φ| ≥ fs(Xl)w) =
Pr (|Yj · fs(Xl)− fs(Xl)φ| ≥ fs(Xl)w) =
Pr (|Yj − φ| ≥ w) (dividing constant fs(Xl) at both sides)
≤ τ2

w2 (Eq.(3)).

IV. IMPLEMENTATION

We implement the Jellyfish sketch in modular blocks based
on a publish/subscribe (Pub/Sub for short) framework.

The Pub/Sub framework provides seamless messaging sup-
ports for monitoring functions. One or multiple producer
entities publish messages towards the same topic, then the
Pub/Sub messaging framework delivers ordered messages to
consumers subscribed to the same topic.

The ingestion function aggregates packets at line rates to
subflow records [35], and evicts subflow record messages
by predefined threshold τ . The hash table reduces packet-
processing delay by cache prefetching and batch processing.

10
0

10
1

10
2

10
3

10
4

10
5

x

10
-7

10
-5

10
-3

10
-1

P
r(

X

 x
)

(a) CAIDA

10
0

10
2

10
4

10
6

x

10
-6

10
-4

10
-2

10
0

P
r(

X

 x
)

(b) MAWI

Fig. 5. The CCDFs of the network flow numbers plotted in log-log axes of
all network flows in public data sets.

The online subflow clustering procedure aims to reduce the
variance of subflows in each bucket array. We initialize the
clustering model with a set of subflow samples. Next, we
adapt the clustering model to be aware of the variations of
subflow distributions. It is not necessary to strictly adhere
to the subflow distribution, since an approximate clustering
model still reduce the variance compared to existing sketching
methods. We maintain the subflow clustering model based the
K-means clustering method that consists of k cluster centers.
The number k controls the number of clusters. The distance
from the item to a cluster center is defined as the one-
dimensional absolute difference between the subflow record
and the cluster center. Let S denote the set of one-dimensional
samples. Let the distance measure between two sample x and
y (x, y ∈ S) be the absolute difference |x− y|. The clustering
model finds a set of k points denoted as µ to minimize the
variance of values within each cluster.

V. EVALUATION

Having presented the Jellyfish method, we next report
experiment results compared to state-of-the-art methods with
real-world data sets.

A. Experimental Setup

Data sets: We perform a real-world trace-driven experiment
study with two popular data sets: (i) CAIDA: it is collected on
February 18, 2016 at the Equinix-Chicago monitor by CAIDA
[23], with 1799.7 million stream network flows lasting for one
hour. (ii) MAWI: it is collected on May 20, 2019 at the transit
link of WIDE to the upstream ISP [36], with 14.0 million
stream network flows lasting for 899.99 seconds. The source
IP of each stream network flow serves as the network flow’s
key.

We plot the complementary cumulative distribution function
(CCDF) of the network flow numbers of all network flows, as
shown in Figure 5. We test the CCDFs with the power-law
distribution for the network flow distributions [37]. We see
that the data sets are significantly heavy-tailed with a large
variance, where Pr [X > x] ∼ x−α approximately holds for
intervals spreading several orders of magnitude.

Workflow: We split each data set to ten intervals of equal
size. Each interval is replayed to the ingestion function. The

1 5 10 50 100

Memory (KB)

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

R
E

Jellyfish

LSS

ElasticSketch

CU

CS

CM

(a) CAIDA

1 5 10 50 100

Memory (KB)

10
-3

10
-2

10
-1

1

10

10
2

10
3

10
4

R
E

Jellyfish

LSS

ElasticSketch

CU

CS

CM

(b) MAWI

Fig. 6. The average of the relative errors for the per-flow query. The y-axis
is plotted in the logarithmic scale.

ingestion function publishes subflow tuples to sketching com-
ponents over the Pub/Sub framework. This sketch is queried
by the operator after the interval ends.

Metrics: We evaluate the effectiveness of the sketch meth-
ods with three metrics: (i) Relative error (RE): We use the
relative error to quantify the accuracy of the per-flow query.
It is defined as the mean of the relative error of each queried
network flow. (ii) F1 score: We use the F1 score to quantify
the precision for the heavy-hitter query. It is defined as the
harmonic mean of the precision and the recall values, i.e.,
2PR×RR
PR+RR , where PR (Precision Rate) denotes the percent of

true heavy-hitter instances reported, and RR (Recall Rate)
denotes the percent of found true heavy-hitter instances.

Parameters: We select the default parameters for Jellyfish
based on the sensitivity experiments. We set the default
number of clusters to 30, and the default number of buckets
in Jellyfish to 0.1 times the number of network flows in an
evaluation interval. We set the truncated threshold for subflow
tuples to 128.

The experiments are repeated in ten times, and we report
the average result and the 95-th confidence interval.

B. Comparison

We first compare Jellyfish with state-of-the-art sketching
methods using the same space for fair comparison. We report
average metrics as a function of the total amount of memory
of the sketch physical structure. We keep the membership of
inserted keys with the same set of Cuckoo filters, since all
sketching methods are agnostic of the keys by themselves.

1) Per-flow Query: We first test the relative errors of
the per-flow query. We compare Jellyfish with five per-flow
sketching methods including count-sketch (CS) [26], cusketch
(CU) [10], count-min (CM) [25], Elastic Sketch (ES) [23] and
LSS [9].

Figure 6 shows the relative errors as we vary the bucket
storage from one KB to 100 KB. We see that the relative errors
of Jellyfish and LSS are three to five orders of magnitude
smaller than those of CS, CM, CU and ElasticSketch. Further,
Jellyfish is significantly more accurate than LSS, since the
record distributions in Jellyfish are less skewed than those in
LSS.

2) Entropy Query: We next compare the relative errors
of the entropy query of Jellyfish with five entropy-sketching

1 5 10 50 100

Memory (KB)

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

R
E

Jellyfish LSS ElasticSketch sieving CS CM

(a) CAIDA

1 2 3 4 5

Memory (KB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

10

R
E

Jellyfish LSS ElasticSketch sieving CS CM

(b) MAWI

Fig. 7. The average of the relative errors for the entropy query. The y-axis
is plotted in the logarithmic scale.

1 5 10 50 100

Memory (KB)

0

0.2

0.4

0.6

0.8

1

F
1

Jelliyfish

LSS

hashpipe

ElasticSketch

ss

CS

CM

(a) CAIDA

1 5 10 50 100

Memory (KB)

0

0.2

0.4

0.6

0.8

1

F
1

Jelliyfish LSS hashpipe ElasticSketch ss CS CM

(b) MAWI

Fig. 8. The average of the F1 score of compared methods.

methods including count-min (CM) [25], count-sketch (CS)
[26], Sieving [38], Elastic Sketch (ES) [23] and LSS [9].

Figure 7 shows the relative errors as we vary the sketching
storage from one KB to 100 KB. We see that Jellyfish is
three to six orders of magnitude more accurate than the
other methods. This is due to the fact that Jellyfish clusters
less-skewed subflow records to bucket arrays, which closely
preserves the global distribution of the network-flow counters.

3) Heavy Hitter: We next compare the F1 scores of the
heavy-hitter query with six heavy-hitter methods including
count-min (CM), count-sketch (CS), Spacesaving (SS) [11],
ElasticSketch (ES), and hashpipe [13] and LSS [9]. We set
the threshold of the heavy hitters to the top-5% of network
flows.

Figure 8 shows the F1 scores as we increase the sketching
storage from one KB to 100 KB. We see that the F1 scores
of both Jellyfish and LSS are close to one, since the heavy
hitters depend on a small set of the largest network flows, and
both methods put large items to the same bucket arrays by the
clustering process. While hashpipe, ElasticSketch, SS, CS and
CM are more sensitive to the mixing of small items with large
items.

C. Sensitivity

Having shown that Jellyfish outperforms state-of-the-art
methods for different query requests, we next evaluate the
sensitivity of Jellyfish by varying the choice of parameters. For
each group of experiments, we fix all but one parameters and
show the variations of the relative errors for the per-flow query,
since this query captures the fine-grained query performance.
We follow the default parameters for Jellyfish presented in
subsection V-A.

10 20 30 40 50 60 70 80 90100

Interval (%)

0

0.01

0.02

0.03

0.04

0.05

R
E

(a) CAIDA, Jellyfish

10 20 30 40 50 60 70 80 90100

Interval (%)

0

0.02

0.04

0.06

R
E

(b) MAWI, Jellyfish

10 20 30 40 50 60 70 80 90 100

Interval (%)

0

0.2

0.4

0.6

0.8

1

R
E

(c) CAIDA, LSS

10 20 30 40 50 60 70 80 90 100

Interval (%)

0

1

2

3

4

5

R
E

(d) MAWI, LSS

Fig. 9. The average and the 95-th confidence interval of relative errors for
partitioned network-flow ranges for Jellyfish and LSS with 5 KB-sized bucket
arrays.

1) Range: We first report the distributions of per-flow errors
for network-flow counters in different ranges. We partition the
network-flow counters to ten equal-sized groups separated by
the 10-th, 20-th to 90-th percentiles in the distribution. We plot
the average and the 95-th confidence intervals of the per-flow
metric for each network flow counter, and group them by the
group of network-flow counters.

Figure 9 plots the per-flow relative error for each group
of network-flow counters of Jellyfish and LSS. We see that
the per-flow errors are mainly caused by top network-flow
counters that are located in the last two to three groups, i.e., the
tail of the network flow distribution, while the relative errors
of the rest of groups are zeros or close to zeros. Moreover,
Jellyfish’s per-flow errors for the tail distribution are over
ten times smaller than those of LSS, thanks to the clustered
subflow records to bucket arrays.

2) Bucket Ratio: We next vary the ratio of the number of
buckets in the Jellyfish to the number of network flows in an
measurement interval. Figure 10 shows the average and the
95-th confidence intervals of the per-flow relative error as a
function of the ratios ranging from 0.001 to 1. We see that the
per-flow relative errors of Jellyfish at the bucket ratio 0.001
are around 0.008 and 0.005 for the CAIDA and MAWI data
sets, respectively. Incrementing the bucket ratio from 0.001 to
1 reduces the average relative error by one to two times. Thus,
Jellyfish is reasonably accurate under severe hash collisions.

3) Number of Clusters: We next vary the number of clusters
and see the variations of per-flow query performance. Figure
11 plots the average and the 95-th confidence interval of the
per-flow relative error as a function of the number of clusters.
We see that the per-flow relative error decrements quickly as
the number of clusters increments from 5 to 40, and reach the

10
-3

10
-2

10
-1

10
0

Ratio

2

4

6

8

10

R
E

10
-3

(a) CAIDA

10
-3

10
-2

10
-1

10
0

Ratio

0

2

4

6

R
E

10
-3

(b) MAWI

Fig. 10. The average and the 95-th confidence interval of relative errors as
a function of the ratio of the number of buckets to the number of network
flows in an interval. The x-axis is shown in logarithmic scale.

0 20 40 60 80 100

Clusters

10
-4

10
-3

10
-2

10
-1

1

R
E

(a) CAIDA

0 20 40 60 80 100

Clusters

10
-4

10
-3

10
-2

10
-1

1

R
E

(b) MAWI

Fig. 11. The average and the 95-th confidence interval of relative errors as a
function of the number of clusters.

10%20%30%40%50%60%70%80%90%100%

Samples

0

0.002

0.004

0.006

0.008

0.01

R
E

(a) CAIDA

10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Samples

0

1

2

3

4

5

R
E

10
-3

(b) MAWI

Fig. 12. The average and the 95-th confidence interval of relative errors as a
function of the percent of cluster samples.

diminishing returns with around 60 clusters. Increasing the
number of clusters leads to a fine-grained partitioned subflow
clustering model, which separates more dissimilar subflow
records to different bucket arrays accordingly.

4) Clustering Samples: We next test the clustering stability
as we change the number of clustering samples for the K-
means clustering training process. We vary the number of
cluster samples as a function of the percent of the number of
subflow records in an interval. We plot the average and the 95-
th confidence interval for the relative-error metric. Figure 12
plots the variations of per-flow relative errors as we change the
number of cluster samples from 10% to 100% of the number
of records in an interval. We see that the per-flow relative
errors remain fairly stable. Thus a small number of clustering
samples are enough to obtain fairly accurate results.

80 85 90 95 99

Threshold

0

0.2

0.4

0.6

0.8

1

F
1

(a) CAIDA

80 85 90 95 99

Threshold

0

0.2

0.4

0.6

0.8

1

F
1

(b) MAWI

Fig. 13. The F1 scores as a function of the threshold of heavy hitters.

10 20 30 40 50 60 70 80 90100

Arrivals (%)

0

0.002

0.004

0.006

0.008

0.01

R
E

(a) CAIDA

10 20 30 40 50 60 70 80 90 100

Arrivals (%)

0

1

2

3

4

5

R
E

10
-3

(b) MAWI

Fig. 14. The average and the 95-th confidence interval of relative errors as a
function of the percent of arrived network flows.

5) Heavy Hitter: We next test the per-flow relative errors
as we vary the heavy-hitters from those greater than 80% to
99% of network flows. Figure 13 shows the average and the
95-th confidence of the F1 scores as we change the thresholds
of heavy hitters. We see that the F1 scores are more close
to one with increases thresholds towards 99%. Thus Jellyfish
remains stably accurate for heavy-hitter queries for a wide
range of parameters.

6) Dynamics: We next plot the variations of the per-flow
relative errors as we gradually insert items to a fixed Jellyfish
sketch. We plot the average and the 95-th confidence interval
for the relative-error metric. Figure 14 shows that the per-flow
relative errors increase gracefully with increasing records from
10% to 100%. This is because Jellyfish clusters similar subflow
records to the same bucket array, so that the estimation is less
affected by hash collisions of subflows.

7) Subflow Threshold τ : We next plot the variations of the
per-flow relative errors as we change the subflow threshold τ .
We plot the average and the 95-th confidence interval for the
relative-error metric. Figure 15 shows that the per-flow relative
errors increases gracefully with increasing thresholds from 32
to 1024. This is because larger subflow thresholds increases
the chance to put more dissimilar subflow records to the same
buckets. On the other hand, reducing the subflow thresholds
creates a higher-rate stream of subflow records. As a result,
we should choose a modest subflow threshold to trade off the
accuracy and the subflow rate.

We next count the number of subflows per network flow for
different subflow thresholds τ . Figure 16 shows the cumulative
distribution functions of the numbers of subflows. We see that

32 64 128 256 512 1024

Threshold

0

0.005

0.01

0.015

0.02

0.025

R
E

(a) CAIDA

32 64 128 256 512 1024

Threshold

0

0.005

0.01

0.015

0.02

R
E

(b) MAWI

Fig. 15. The average and the 95-th confidence interval of relative errors as a
function of the thresholds.

10
0

10
1

10
2

10
3

Subflows

90

92

94

96

98

100

C
D

F

32

64

128

256

512

1024

(a) CAIDA

1 10 100 1000 10000

Subflows

90

92

94

96

98

100

C
D

F

32

64

128

256

512

1024

(b) MAWI

Fig. 16. The cumulative distribution function (CDF) of the numbers of
subflows per network flow. The x-axis is plotted in logarithmic scale.

over 90% of network flows only have one subflow tuple, since
the majority of network flows are small flows. Further, as we
increase the subflow threshold τ from 32 to 128, 99% of the
numbers of subflows decrements from 13 to 4 for the CAIDA
data set, and decrements from 19 to 5 for the MAWI data set,
respectively.

8) Efficiency: We evaluated the latency of delivering mes-
sages over the Pub/Sub message bus. Most messages are
delivered within 60 ms, thus the message bus provides timely
delivery in most time. A small number of messages may be
delivered for more than 100 ms due to the queueing in the
message bus.

The average ingestion rate for a single-thread ingestion
function reaches 22.35 million packets per second on the Intel
Core i7 CPU with Quad-core.

VI. CONCLUSION

We present a locality-sensitive subflow sketching method
Jellyfish that disaggregates a single network-flow counter to
multiple subflow counters, and inserts similar subflow counters
to the same bucket array based on subflow-clustering model.
Real-world data sets based experiments show that Jellyfish
significantly reduces the per-flow query errors by orders of
magnitude with low variance within bucket arrays. The im-
plementation is publicly available 1. We plan to find more
space-optimized data structures to track subflow membership.

REFERENCES

[1] Y. Fu, Y. Wang, and E. Biersack, “Hybridnn: An accurate and scalable
network location service based on the inframetric model,” Future Gener.
Comput. Syst., vol. 29, no. 6, pp. 1485–1504, 2013.

1https://github.com/yongquanf

[2] ——, “A general scalable and accurate decentralized level monitoring
method for large-scale dynamic service provision in hybrid clouds,”
Future Gener. Comput. Syst., vol. 29, no. 5, pp. 1235–1253, 2013.

[3] Y. Fu and X. Xu, “Self-stabilized distributed network distance predic-
tion,” IEEE/ACM Trans. Netw., vol. 25, no. 1, pp. 451–464, 2017.

[4] Y. Fu and E. Biersack, “MCR: structure-aware overlay-based latency-
optimal greedy relay search,” IEEE/ACM Trans. Netw., vol. 25, no. 5,
pp. 3016–3029, 2017.

[5] Y. Fu, P. Barlet-Ros, and D. Li, “Every timestamp counts: Accurate
tracking of network latencies using reconcilable difference aggregator,”
IEEE/ACM Trans. Netw., vol. 26, no. 1, pp. 90–103, 2018.

[6] Y. Fu, D. Li, P. Barlet-Ros, C. Huang, Z. Huang, S. Shen, and H. Su, “A
skewness-aware matrix factorization approach for mesh-structured cloud
services,” IEEE/ACM Trans. Netw., vol. 27, no. 4, pp. 1598–1611, 2019.

[7] Y. Zhang, D. Li, C. Guo, H. Wu, Y. Xiong, and X. Lu, “Cubicring: Ex-
ploiting network proximity for distributed in-memory key-value store,”
IEEE/ACM Trans. Netw., vol. 25, no. 4, pp. 2040–2053, 2017.

[8] Y. Zhang, D. Li, Z. Sun, F. Zhao, J. Su, and X. Lu, “CSR: classified
source routing in distributed networks,” IEEE Trans. Cloud Comput.,
vol. 6, no. 2, pp. 464–477, 2018.

[9] Y. Fu, D. Li, S. Shen, Y. Zhang, and K. Chen, “Clustering-preserving
network flow sketching,” in IEEE INFOCOM, 2020.

[10] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting: Focusing on the elephants, ignoring the mice,” ACM Trans.
Comput. Syst., vol. 21, no. 3, pp. 270–313, 2003.

[11] A. Metwally, D. Agrawal, and A. El Abbadi, “Efficient computation
of frequent and top-k elements in data streams,” in Database Theory
- ICDT 2005, 10th International Conference, Edinburgh, UK, January
5-7, 2005, Proceedings, 2005, pp. 398–412.

[12] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: a novel counter architecture for per-flow measurement,”
in Proceedings of the 2008 ACM SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, SIGMETRICS
2008, Annapolis, MD, USA, June 2-6, 2008, 2008, pp. 121–132.

[13] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and
J. Rexford, “Heavy-hitter detection entirely in the data plane,” in
Proceedings of the Symposium on SDN Research, SOSR 2017, Santa
Clara, CA, USA, April 3-4, 2017, 2017, pp. 164–176.

[14] G. S. Manku and R. Motwani, “Approximate frequency counts over data
streams,” in VLDB 2002, Proceedings of 28th International Conference
on Very Large Data Bases, August 20-23, 2002, Hong Kong, China,
2002, pp. 346–357.

[15] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based change
detection: methods, evaluation, and applications,” in Proceedings of the
3rd ACM SIGCOMM Internet Measurement Conference, IMC 2003,
Miami Beach, FL, USA, October 27-29, 2003, 2003, pp. 234–247.

[16] A. Kumar, M. Sung, J. J. Xu, and J. Wang, “Data streaming algo-
rithms for efficient and accurate estimation of flow size distribution,”
in Proceedings of the International Conference on Measurements and
Modeling of Computer Systems, SIGMETRICS 2004, June 10-14, 2004,
New York, NY, USA, 2004, pp. 177–188.

[17] M. Yoon, T. Li, S. Chen, and J. Peir, “Fit a compact spread estimator
in small high-speed memory,” IEEE/ACM Trans. Netw., vol. 19, no. 5,
pp. 1253–1264, 2011.

[18] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braverman, “One
sketch to rule them all: Rethinking network flow monitoring with
univmon,” in Proceedings of the ACM SIGCOMM 2016 Conference,
Florianopolis, Brazil, August 22-26, 2016, 2016, pp. 101–114.

[19] G. Cormode, “Data sketching,” Commun. ACM, vol. 60, no. 9, pp. 48–
55, 2017.

[20] R. Ben-Basat, G. Einziger, R. Friedman, M. C. Luizelli, and E. Waisbard,
“Constant time updates in hierarchical heavy hitters,” in Proceedings of
the Conference of the ACM Special Interest Group on Data Communi-
cation, SIGCOMM 2017, Los Angeles, CA, USA, August 21-25, 2017,
2017, pp. 127–140.

[21] J. Gong, T. Yang, H. Zhang, H. Li, S. Uhlig, S. Chen, L. Uden, and
X. Li, “Heavykeeper: An accurate algorithm for finding top-k elephant
flows,” in 2018 USENIX Annual Technical Conference, USENIX ATC
2018, Boston, MA, USA, July 11-13, 2018, H. S. Gunawi and B. Reed,
Eds. USENIX Association, 2018, pp. 909–921.

[22] Y. Zhou, T. Yang, J. Jiang, B. Cui, M. Yu, X. Li, and S. Uhlig,
“Cold filter: A meta-framework for faster and more accurate stream
processing,” in Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA,

June 10-15, 2018, G. Das, C. M. Jermaine, and P. A. Bernstein, Eds.
ACM, 2018, pp. 741–756.

[23] T. Yang, J. Jiang, P. Liu, Q. Huang, J. Gong, Y. Zhou, R. Miao,
X. Li, and S. Uhlig, “Elastic sketch: adaptive and fast network-wide
measurements,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM 2018,
Budapest, Hungary, August 20-25, 2018, 2018, pp. 561–575.

[24] Q. Huang, P. P. C. Lee, and Y. Bao, “Sketchlearn: relieving user burdens
in approximate measurement with automated statistical inference,” in
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, SIGCOMM 2018, Budapest, Hungary, August
20-25, 2018, 2018, pp. 576–590.

[25] G. Cormode and S. Muthukrishnan, “An improved data stream summary:
the count-min sketch and its applications,” J. Algorithms, vol. 55, no. 1,
pp. 58–75, 2005.

[26] M. Charikar, K. C. Chen, and M. Farach-Colton, “Finding frequent
items in data streams,” in Automata, Languages and Programming, 29th
International Colloquium, ICALP 2002, Malaga, Spain, July 8-13, 2002,
Proceedings, 2002, pp. 693–703.

[27] Q. Huang, X. Jin, P. P. C. Lee, R. Li, L. Tang, Y. Chen, and G. Zhang,
“Sketchvisor: Robust network measurement for software packet pro-
cessing,” in Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2017, Los Angeles, CA,
USA, August 21-25, 2017, 2017, pp. 113–126.

[28] G. Cormode and M. Hadjieleftheriou, “Finding the frequent items in
streams of data,” Commun. ACM, vol. 52, no. 10, pp. 97–105, 2009.

[29] Z. Liu, R. Ben-Basat, G. Einziger, Y. Kassner, V. Braverman, R. Fried-
man, and V. Sekar, “Nitrosketch: robust and general sketch-based
monitoring in software switches,” in Proceedings of the ACM Special
Interest Group on Data Communication, SIGCOMM 2019, Beijing,
China, August 19-23, 2019, J. Wu and W. Hall, Eds. ACM, 2019,
pp. 334–350.

[30] Q. Huang, H. Sun, P. P. C. Lee, W. Bai, F. Zhu, and Y. Bao, “Omnimon:
Re-architecting network telemetry with resource efficiency and full
accuracy,” in ACM SIGCOMM, 2020.

[31] CAIDA, “Trace statistics for caida passive oc48 and oc192 traces,” http:
//www.caida.org/data/passive/trace stats/, 2018.

[32] B. Fan, D. G. Andersen, M. Kaminsky, and M. Mitzenmacher, “Cuckoo
filter: Practically better than bloom,” in Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and
Technologies, CoNEXT 2014, Sydney, Australia, December 2-5, 2014,
2014, pp. 75–88.

[33] D. Zhou, B. Fan, H. Lim, M. Kaminsky, and D. G. Andersen, “Scalable,
high performance ethernet forwarding with cuckooswitch,” in Confer-
ence on emerging Networking Experiments and Technologies, CoNEXT
’13, Santa Barbara, CA, USA, December 9-12, 2013, 2013, pp. 97–108.

[34] H. Dai, Y. Zhong, A. X. Liu, W. Wang, and M. Li, “Noisy bloom filters
for multi-set membership testing,” in Proceedings of the 2016 ACM
SIGMETRICS International Conference on Measurement and Modeling
of Computer Science, Antibes Juan-Les-Pins, France, June 14-18, 2016,
2016, pp. 139–151.

[35] M. Moshref, M. Yu, R. Govindan, and A. Vahdat, “Trumpet: Timely and
precise triggers in data centers,” in Proceedings of the ACM SIGCOMM
2016 Conference, Florianopolis, Brazil, August 22-26, 2016, 2016, pp.
129–143.

[36] W. M. WorkingGroup, “Packet traces from wide backbone,” http://mawi.
wide.ad.jp/mawi/, 2019.

[37] A. Clauset, C. R. Shalizi, and M. E. J. Newman, “Power-law distri-
butions in empirical data,” SIAM Review, vol. 51, no. 4, pp. 661–703,
2009.

[38] A. Lall, V. Sekar, M. Ogihara, J. J. Xu, and H. Zhang, “Data streaming
algorithms for estimating entropy of network traffic,” in Proceedings
of the Joint International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS/Performance 2006, Saint Malo,
France, June 26-30, 2006, 2006, pp. 145–156.

