
Neural Networks 172 (2024) 106151

A
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Full Length Article

ConTIG: Continuous representation learning on temporal interaction graphs
Zihui Wang a,b,1, Peizhen Yang a,b,1, Xiaoliang Fan a,b,∗, Xu Yan a,b, Zonghan Wu c, Shirui Pan d,
Longbiao Chen a,b, Yu Zang a,b, Cheng Wang a,b, Rongshan Yu a,b

a Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, 361000, Fujian, China
b Key Laboratory of Multimedia Trusted Perception and Efficient Computing, Ministry of Education of China, Xiamen University, 361005, PR China
c University of Technology Sydney, Ultimo, 2007, NSW, Australia
d School of ICT, Griffith University, Gold Coast, 4222, Queensland, Australia

A R T I C L E I N F O

Keywords:
Graph representation
Graph embedding
Temporal interaction graph
Mining and learning in graphs
Graph neural networks

A B S T R A C T

Representation learning on temporal interaction graphs (TIG) aims to model complex networks with the
dynamic evolution of interactions on a wide range of web and social graph applications. However, most
existing works on TIG either (a) rely on discretely updated node embeddings merely when an interaction
occurs that fail to capture the continuous evolution of embedding trajectories of nodes, or (b) overlook the
rich temporal patterns hidden in the ever-changing graph data that presumably lead to sub-optimal models.
In this paper, we propose a two-module framework named ConTIG, a novel representation learning method
on TIG that captures the continuous dynamic evolution of node embedding trajectories. With two essential
modules, our model exploits three-fold factors in dynamic networks including latest interaction, neighbor features,
and inherent characteristics. In the first update module, we employ a continuous inference block to learn the
nodes’ state trajectories from time-adjacent interaction patterns using ordinary differential equations. In the
second transform module, we introduce a self-attention mechanism to predict future node embeddings by
aggregating historical temporal interaction information. Experiment results demonstrate the superiority of
ConTIG on temporal link prediction, temporal node recommendation, and dynamic node classification tasks
of four datasets compared with a range of state-of-the-art baselines, especially for long-interval interaction
prediction.
1. Introduction

Graph representation learning has attracted a surge of research
attention owing to the widespread existence of graph-structured data
in the real world such as social networks, Recommendation (Wen
et al., 2023; Zhang et al., 2023) and other user-item interaction sys-
tems (Hamilton et al., 2017b). Learning graph embedding is a powerful
approach of graph representation learning, which maps the characteris-
tics of nodes to a low-dimensional vector space so that the proximities
of nodes in topological space can be well reserved (Cui et al., 2018). It
has shown great success in graph representation learning from shallow
graph embedding methods (Su et al., 2022) to deep graph neural
networks (GNNs) (Wang et al., 2022; Wu et al., 2020). Recently,
representation learning on the dynamic graph has attracted many

∗ Corresponding author.
E-mail addresses: wangziwei@stu.xmu.edu.cn (Z. Wang), yangpz@stu.xmu.edu.cn (P. Yang), fanxiaoliang@xmu.edu.cn (X. Fan), yanxu97@stu.xmu.edu.cn

(X. Yan), zonghan.wu-3@student.uts.edu.au (Z. Wu), s.pan@griffith.edu.au (S. Pan), longbiaochen@xmu.edu.cn (L. Chen), zangyu7@126.com (Y. Zang),
cwang@xmu.edu.cn (C. Wang), rsyu@xmu.edu.cn (R. Yu).

1 These authors contributed equally to this work.

research attention (Gao et al., 2022; Kazemi et al., 2020; Li et al.,
2022), and they mainly model temporal graphs either as a sequence
of snapshots (Gong et al., 2020; Pareja et al., 2020) or as real events
with timestamps (An et al., 2022). Specially, the events only occur
between users and items to get a temporal interaction graph (TIG) while
events would not happen among users or items themselves (Zhang
et al., 2021), which is also concluded as a bipartite graph, e.g., Fig. 1
shows the interactions that users edit posts on a social platform with
timestamps which can be regarded as a sequence of interactions.

For existing works learning temporal interaction embedding from
the sequence of interactions, a number of studies discretely update the
embeddings of the interactive nodes once an interaction occurs (Kumar
et al., 2019; Zhang et al., 2021). Other works learn the interactions by
vailable online 29 January 2024
893-6080/© 2024 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2024.106151
Received 21 January 2023; Received in revised form 15 December 2023; Accepted
 26 January 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:wangziwei@stu.xmu.edu.cn
mailto:yangpz@stu.xmu.edu.cn
mailto:fanxiaoliang@xmu.edu.cn
mailto:yanxu97@stu.xmu.edu.cn
mailto:zonghan.wu-3@student.uts.edu.au
mailto:s.pan@griffith.edu.au
mailto:longbiaochen@xmu.edu.cn
mailto:zangyu7@126.com
mailto:cwang@xmu.edu.cn
mailto:rsyu@xmu.edu.cn
https://doi.org/10.1016/j.neunet.2024.106151
https://doi.org/10.1016/j.neunet.2024.106151

Neural Networks 172 (2024) 106151Z. Wang et al.
Table 1
Table comparing the three-fold factors of existing temporal interaction graph methods learning temporal
interaction embedding and our proposed ConTIG. ConTIG satisfies all the factors.

Name Latest interaction Neighbor features Inherent characteristics

TDGNN (Qu et al., 2020) ✗ ✓ ✗

TGAT (Xu et al., 2020) ✗ ✓ ✗

JODIE (Kumar et al., 2019) ✓ ✗ ✗

TigeCMN (Zhang et al., 2021) ✓ ✗ ✗

ConTIG (ours) ✓ ✓ ✓
Fig. 1. An illustrated example of the inactive user (i.e., User A) with long-interval
interaction in a temporal interaction graph. In the long-interval of User A, her future
posts about COVID-19 might be affected by three factors: (1) her latest interaction
with ‘‘Gathering guidelines’’; (2) her neighbors, user B and C; and (3) her inherent
characteristics as a healthcare personnel.

aggregating the temporal neighbor features to pass messages between
nodes (Qu et al., 2020; Xu et al., 2020), which model discrete dynamic
of node representation in multiple propagation layers (Oono & Suzuki,
2020). Although these discrete works have made substantial advances
in learning temporal interaction embedding, they fail to capture the
continuous dynamic evolution of node embedding trajectories thus
losing temporal information for non-ignorable and inactive nodes with
long-interval interactions (e.g., User A in Fig. 1). Therefore, we aim
to learn nodes embedding trajectories and capture the continuous
dynamic of node representations.

Learning dynamic node embedding trajectories is extremely chal-
lenging due to the complex non-linear dynamic in temporal interaction
graphs. We conclude the challenges in three folds under the scenario
of posting in Reddit2 website. First, latest interaction information may
have a significant impact on the current interaction, e.g., in Fig. 1,
the posts made by User A at 𝑡4 would be influential for 𝑡𝑞 , since
guidelines of holiday gathering under COVID-19 pandemics will be
regularly implemented. Second, the node state is also affected by
their neighbors’ features over time. For instance, User A is expected to
emulate their neighbors by posting "COVID-19 vaccine’’ at 𝑡𝑞 in Fig. 1.
Third, inherent characteristics of nodes is vitally important that would
fatally determine the state regardless of aforementioned two factors
(i.e., latest interaction, and neighbors’ features). For example in Fig. 1,
User A is a frontline healthcare personnel and she could inherently pay
much attention to COVID-19 training on infection control regardless
of the latest interaction and neighbor features. In summary, existing
methods hold partial considerations for these three-fold factors. We
compare existing temporal interaction graph (TIG) methods as is shown
in Table 1. Existing TIG methods lack of comprehensive solution with
the consideration of all three-fold factors.

To cover the shortcomings of previous methods, we propose a
Continuous representation learning method on Temporal Interaction
Graphs (ConTIG). The proposed ConTIG contains two modules: the
update module and transform module. When an interactive message

2 https://www.reddit.com/
2

comes, in the update module, inspired by Xhonneux et al. (2020),
we define a neural ordinary differential equations (ODE) (Chen et al.,
2018) with the three aforementioned factors affecting node states
(i.e., latest interaction, neighbors’ feature and inherent characteristics),
and incorporate them with the continuous-time encoding function to
trace dynamic knowledge and learn node state trajectories. Then the
node embeddings at the ending time of neural ODE is used to update
embeddings of interacting nodes. In the transform module, a self-
attention mechanism is introduced to awaken historical interactive
information of current interacting nodes and convert them to generate
future node representations. The results on temporal link prediction,
temporal node recommendation and dynamic node classification tasks
show the effectiveness of our proposed model compared with a range
of state-of-the-art baselines, especially for long-interval interactions
prediction.

The contributions of this work are summarized as follows:

• We introduce ConTIG, a novel continuous representation learn-
ing framework that employs an encoder–decoder architecture to
constantly capture the dynamic evolution of node embedding
trajectories for temporal interaction prediction.

• We design the update module which assembles three-fold factors
(i.e., latest interaction, neighbor features, and inherent charac-
teristics) into a neural ODE. The module allows us to estimate
the probable updating direction of embedding trajectories for all
nodes, including inactive ones.

• We introduce the transform module combining the aforemen-
tioned update module with a self-attention mechanism. These
two modules guarantee that our framework is effective on long-
interval interactions prediction.

• We evaluate our ConTIG on three representation learning tasks
with four real-world datasets. Extensive experiments demonstrate
that ConTIG compares favorably against state-of-the-art methods

The rest of this paper is organized as follows. In Section 2, we
discuss some related work. Section 3 and 4 describes the notations and
our proposed model in detail. In Section 5, we conduct experiments
on several datasets and compare them with state-of-the-art methods. In
Section 6, the conclusion and our future work are presented.

2. Related work

In this section, we introduce the embedding methods for both
the static graph and temporal graph, as well as the neural ordinary
differential equation (ODE).

2.1. Static graph embedding

Early works for representation learning are mainly shallow models
including graph factorization approaches (Ahmed et al., 2013) and
skip-gram models (Grover & Leskovec, 2016; Perozzi et al., 2014;
Tang et al., 2015), which learn node representations by random walk
objectives. With the success of deep learning, GNNs (Velickovic et al.,
2018; Wang et al., 2022; Wu et al., 2020) have gradually attracted
great research interest. They are effective approaches to learn node
representations by updating each node according to messages from
neighboring nodes in graphs in each layer. GNNs essentially model

https://www.reddit.com/

Neural Networks 172 (2024) 106151Z. Wang et al.

i
𝑒

D
p
𝜙

i
i
l
𝑞
𝑢
t

4

m
t
d

4

e
u
n
m

discrete dynamics of node representations with multiple propagation
layers (Oono & Suzuki, 2020). However, all the above mentioned
approaches are limited to learning node embeddings on static graph
structure information, and the temporal behavior of interaction over
time is generally ignored.

2.2. Temporal graph embedding

One common way to handle temporal graphs is to decompose it
into multiple static graphs snapshots by a regular time interval. Some
works embed the graph convolution into the recurrent neural network
(RNN) based models or attention mechanism (Vaswani et al., 2017),
which learns to exploit the dynamic information in the graph evolution
within a period of time (Gong et al., 2020; Liu et al., 2020; Pareja
et al., 2020; Sankar et al., 2020; Yang et al., 2021). Some other works
are dynamic extensions of ideas applied in the static case inspired by
methods such as PageRank (Guo et al., 2021), matrix factorization (Zhu
et al., 2016), graph autoencoder (Goyal et al., 2020, 2018; Jiao et al.,
2021) and the topic model (Spasov et al., 2020) to capture both
the temporal community dynamics and evolution of graph structure.
However, learning embedding from the sequence of graph snapshots
sampled from the temporal graph by a regular time interval may lose
information by only looking at some snapshots of the graph over time.

Therefore, recent works learn temporal graph embedding from the
sequence of timed interactions. A number of studies learn the se-
quence of interactions by discretely updating the node embeddings
once an interaction occurs by RNNs (Rossi et al., 2020; Xu et al., 2021),
memory networks (Zhang et al., 2021), time point process (Lu et al.,
2019; Trivedi et al., 2019), transformer network (Wang, Chang, Li,
et al., 2021), generative models (Zhou et al., 2020), contrasting learn-
ing (Jiang et al., 2021; Tian, Wu, et al., 2021), meta-learning (Yang
et al., 2022), etc. Other works learn the interactions by aggregating the
temporal neighbor features to pass messages between nodes (Liu, Tu,
et al., 2021; Rossi et al., 2020; Tian, Xiong, & Shi, 2021; Xu et al., 2020)
or learning node representation from random walk objects (Nguyen
et al., 2018) and temporal motifs (Fu et al., 2020; Liu, Ma, & Li, 2021;
Paranjape et al., 2017; Wang, Chang, Liu, et al., 2021). TGAT (Xu
et al., 2020) proposes the temporal graph attention layer to aggregate
temporal-topological neighborhood features. TGN (Rossi et al., 2020)
makes a combination of updating operators and aggregating operators.
However, these methods learn the discrete dynamic of node represen-
tations, and it is not beneficial to learn the node state trajectories.
Moreover, they ignore the influence of the inherent characteristics of
the change on the node states, which is not beneficial to capture the
complex non-linear dynamic of node representations. Different from the
aforementioned works, we assembled the latest interaction, neighbor
features and inherent characteristics of the nodes into a neural ODE to
learn node state trajectories and update node embeddings. As a result,
our method captures the continuous dynamic of node representation.

2.3. Neural ODE

Neural ordinary differential equations (ODE) (Chen et al., 2018)
is an approach for modeling a continuous dynamics on hidden rep-
resentation, where the dynamic is characterized through an ODE pa-
rameterized by a neural network (i.e. ODE Solver). Recently, there are
some works devote to use neural ODE (Chen et al., 2018) combined
with GNN to characterize the continuous dynamics of node represen-
tations (Xhonneux et al., 2020; Zang & Wang, 2020). However, these
methods are not built for temporal graphs, which are continuous-time
GNNs learning the dynamic of node representation in static graph
scenario to build ‘‘deeper’’ networks. For temporal graphs, (Ding et al.,
2021) learns the evolution of the temporal knowledge graph dynamics
over time using ODEs as a tool. CG-ODE (Huang et al., 2021) presents a
latent ODE generative model that evolves node representations through
3

neighbor aggregation, natural recovery, and inherent physical charac-
teristics. This model aims to capture the coupled dynamics of nodes
and edges with a GNN-based ODE in a continuous manner. GNG-
ODE (Guo et al., 2022) extends the concept of neural ODEs which
capture the dynamics of latent user preference by the original node
representation and the neighborhood representations. GDERec (Qin
et al., 2023) introduces a novel ODE-based GNN that updates the node
representations by incorporating both the initial node embeddings and
the normalized adjacency, implicitly capturing the temporal evolution
of the user-item interaction graph. Different from them, we stand at the
perspective of node state modeling in temporal interaction graph, using
a differential equation integrating the three-fold factors (i.e., latest in-
teraction, neighbor features, and inherent characteristics). In addition,
for practical stability graph learning algorithms, we have thoughtfully
designed our neighbor matrix to get the positive eigenvalues. This
allows us to accurately capture continuous dynamic of node embedding
trajectories.

3. Problem definition

We summarize some notations and state the problem we want to
solve in this section.

Definition 1 (Temporal interaction graph). Temporal interaction graph
is a graph with temporal and attributed interaction edges between
nodes. Temporal interaction graph is defined as a pair  = ( , ), where
 represents vertices sets, and  is a set of the sequences of interactions
with time label between two vertices. An interaction 𝑒 is a tuple of
form (𝑢, 𝑖, 𝑡, 𝑓 𝑢𝑖), where 𝑢 and 𝑖 ∈  represent two vertices that have an
nteraction at timestamp 𝑡, and 𝑓 𝑢𝑖 represents the feature of interaction
.

efinition 2 (Temporal interaction graph embedding). Given the tem-
oral interaction graph  = ( , ), we aim to learn a mapping function:
∶  → R𝑑 to map node features into a low-dimensional latent space

and generate node embeddings 𝐻 ∈ R||×𝑑 to represent nodes, where
𝑑 ≪ || representing the dimension of node embeddings.

Definition 3 (Interaction intervals). In the temporal interaction graph,
each interaction is an edge connected by a source node and a target
node, so we can use source nodes as the label of interaction to cal-
culate the time interval 𝛥𝑡𝑒 between current interaction and its latest
interaction, where the latest interaction is the edge where the source
node last appeared. For example, the latest interaction of the current
interaction, 𝑒𝑗𝑝 = (𝑢𝑗 , 𝑖, 𝑡𝑝, 𝑓 𝑢𝑖), is the interaction 𝑒𝑗−1𝑞 = (𝑢𝑗−1, 𝑟𝑢, 𝜏𝑢, 𝑓 𝑢𝑟𝑢)
n which the node 𝑢 at the last time appeared. As a result, the time
nterval 𝛥𝑡𝑒𝑝 between 𝑒𝑗𝑝 and 𝑒𝑗−1𝑞 is 𝑡𝑝−𝜏𝑢, where 𝑟𝑢 and 𝜏𝑢 represents the
atest interactive node and timestamp of 𝑢, respectively. While, 𝑝 and

represent the interaction id, and 𝑗 represents that how many times
appears. Here, if the node appears for the first time (i.e., 𝑗 = 0), the

ime interval of the interaction is 0.

. The proposed model

In this section, we will describe our model in detail. The proposed
odel – ConTIG consists of two essential modules (i.e., update and

ransform module). We will briefly introduce them in Section 4.1 and
escribe each module in detail in the rest of sections.

.1. Overview of the ConTIG

Fig. 2 provides the framework of our proposed ConTIG. The
ncoder–decoder framework (Fig. 2 left) consists of two modules: the
pdate module and the transform module, which constantly updates
ode embeddings as the interaction messages emerges. In the update
odule (Fig. 2 middle), a continuous inference block is used to update

Neural Networks 172 (2024) 106151Z. Wang et al.
Fig. 2. ConTIG Framework. The encoder–decoder framework (left) consists of a continuous inference block (middle) and a graph attention layer (right). The former contains
a neural ODE defined with three-fold factors (i.e., latest interaction, neighbors’ feature and inherent characteristics) to update the node embeddings according to the output of
encoder. The latter estimates the future embedding of nodes by aggregating observed historical temporal interaction information.
the embeddings of the interacting nodes in a continuous setting. In the
transform module (Fig. 2 right), a graph attention layer is applied to
estimate the future embedding of nodes by capturing observed histori-
cal temporal interaction information. When an interaction message 𝑒𝑝 =
(𝑢, 𝑖, 𝑡𝑝, 𝑓 𝑢𝑖) comes, we first employ a neural encoder to project the latest
interaction message 𝑒𝑞 = (𝑢, 𝑟𝑢, 𝜏𝑢, 𝑓 𝑢𝑟𝑢) of input interacting node into a
latent space, 𝑖.𝑒., 𝐸 = 𝑓 (𝑋). Specifically, the latest interaction message
𝑒𝑞 of each node 𝑢 will be instantly maintained. Afterwards, treating 𝐸 as
the initial value 𝐻 𝑡𝑝 (0) in continuous inference block, we utilize a ODE
to learn the nodes’ continuously changing state trajectories at a certain
time interval [0, 𝛥𝑡], and the embeddings of nodes 𝐻̄

𝑡𝑝−1
𝑢 is updated

as 𝐻̄
𝑡𝑝
𝑢 by the node embeddings obtained in nodes’ state trajectory at

ending time 𝐻 𝑡𝑝 (𝛥𝑡). Then, selecting 𝑘 observed historical neighbors of
current nodes 𝑢, we introduce a self-attention mechanism on graphs
to convert these interactions information to generate future node
embedding 𝐻̂ 𝑡

𝑢. Finally, the decoder uses the future node embeddings
𝐻̂ 𝑡

𝑢 for downstream tasks (i.e., temporal link prediction, temporal node
recommendation, and dynamic node classification).

4.2. Encoder-decoder

The proposed ConTIG adapts an encoder–decoder architecture
(Fig. 2 left). For each interaction, we first project the features into a
latent space to generate the initial hidden representation of nodes. After
learning node embeddings at current timestamp, we finally design a
decoder for the specific downstream tasks.

Before the encoder, we initialize the latest interactive node 𝑟𝑣 and
timestamp 𝜏𝑣 as 0 for all node 𝑣 ∈ V.

In the encoder, to learn the temporal pattern of each interaction, we
use a time encoding function in Xu et al. (2019) to obtain a continuous
functional mapping 𝐹𝑇 ∶ 𝑇 → R𝑑𝑇 from time domain to the 𝑑𝑇 -
dimensional vector space, which projects the timestamps of interactions
into the continuous-time space. For any given time 𝑡, we will generate
its time embeddings as follows:

𝐹𝑇 (𝑡) =
1

√

𝑑𝑇
[𝑐𝑜𝑠

(

𝜔1𝑡
)

, 𝑠𝑖𝑛
(

𝜔1𝑡
)

,

..., 𝑐𝑜𝑠
(

𝜔 𝑡
)

, 𝑠𝑖𝑛
(

𝜔 𝑡
)

],
(1)
4

𝑑𝑇 𝑑𝑇
where 𝜔1, 𝜔2,… , 𝜔𝑑𝑇 are trainable parameters. To learn informative
node representations 𝐻 𝑡𝑝 at timestamp 𝑡𝑝, we concatenate the latest
node embedding of the interactive node 𝐻̄

𝑡𝑝−1
𝑢 , the latest interactive

node 𝐻̄
𝑡𝑝−1
𝑟𝑢 , the last interaction message feature 𝑓 𝑢𝑟𝑢 , and the time

embeddings of the time interval 𝐹𝑇 (𝛥𝑡) to represent new node features
of 𝑢 at timestamp 𝑡 (line 3 in Algorithm 1). Here, as we focus on the
interval between the current interaction and its latest interaction, we
use the time embedding 𝐹𝑇 (𝛥𝑡). Afterwards, we adopt a fully connected
layer as an encoder, and the hidden representations can be defined as
follows:

𝐸 = 𝑓 (𝐻̄
𝑡𝑝−1
𝑢 || 𝐻̄

𝑡𝑝−1
𝑟𝑢 || 𝑓 𝑢𝑟𝑢

||𝐹𝑇 (𝛥𝑡)), (2)

where || is the concatenation operation, and 𝑓 (⋅) is a linear projection
as follows:

𝑓 (𝑥) = 𝑥𝑊 + 𝑏, (3)

where 𝑊 and 𝑏 are learnable parameters.
For the decoder, two fully connected layers are designed for tempo-

ral link prediction and temporal node recommendation tasks, and three
fully connected layers are designed for dynamic node classification
tasks.

4.3. Update: Continuous inference block

In the update module (Fig. 2 middle), to capture the continuous
dynamic of node representation, inspired by Xhonneux et al. (2020),
we define the ODE with the latest interaction information, neighbor fea-
tures, and inherent characteristics of nodes, and use a neural solver to
generate the node state trajectories at a certain time interval [0, 𝛥𝑡]. In
this way, our method can estimate the possible direction of embedding
trajectory for an inactive node.

We select the interactions between each node 𝑢 in temporal inter-
action graph and its last interactive node 𝑟𝑢, and divide them into a set
𝑝 to generate an adjacency matrix 𝑆𝑝 describing their relationships.
𝑆𝑝 ∈ R||×|| is defined by 𝑝 as follows:

𝑆𝑢𝑖
𝑝 =

{

1 if (𝑢, 𝑟𝑢) ∈ 𝑝 (4)

0 otherwise,

Neural Networks 172 (2024) 106151Z. Wang et al.

w
m
e
𝐼
a
i
c

e
t
n
a
o
d
i
o
p
l
t
o
c
c
t
w
𝐸
l
(
c

o
n
A
i
o
t
a
i
t
𝑧

𝑧

w
s

g
t
t
o
i
t
f
o
c
t
f
n
O

𝐻

w

t

𝑡
w
t
d
a

𝑞

w
i

𝛼

w
f

As the degree of nodes can be very different, we typically normalize
the adjacency matrix as 𝐷

− 1
2

𝑝 𝑆𝑝𝐷
− 1

2
𝑝 , where 𝐷𝑝 = diag

(

∑

𝑗 𝑆
𝑖𝑗
𝑝

)

∈
R||×|| is the degree matrix of 𝑆𝑝. As such a normalized adjacency
matrix always has an eigenvalue decomposition, and the eigenvalues
are in the interval [−1, 1]. To get the positive eigenvalues and make
graph learning algorithms stable in practice, we follow (Kipf & Welling,
2017) and leverage the following regularized matrix for characterizing
graph structures:

𝐴𝑝 =
𝛽
2

(

𝐼𝑁 +𝐷
− 1

2
𝑝 𝑆𝑝𝐷

− 1
2

𝑝

)

, (5)

here 𝛽 ∈ (0, 1) is a hyperparameter, 𝑁 = |V|. 𝐼𝑁 ∈ R𝑁×𝑁 is
erely the identity matrix that are designed to guarantee the positive

igenvalue of the adjacency matrix (Kipf & Welling, 2017). As a result,
𝑁 is completely unrelated to any node, thus it has no information
bout inherent characteristics of nodes. 𝐴𝑝 only denotes the normal-
zation of the adjacency matrix 𝑆𝑝 without information on inherent
haracteristics of nodes, where the eigenvalues of 𝐴𝑝 are in [0, 𝛽].

Afterwards, to capture the complex non-linear dynamic of node
mbeddings, we assume that there are three possible factors affecting
he node states: (1) latest interaction information exhibiting the latest
odes states; (2) neighbors’ features affecting the change of node states;
nd (3) the inherent characteristics of nodes determining the influence
f the aforementioned two factors. As a continuous network with
ynamics, ODE can naturally adapt to observation data at any time
nterval. ODE can automatically adjust their evaluation strategy based
n the input provided, leading to faster and more effective training
rocesses. When the network layer of the model is large and the
earning rate is small, it is possible to utilize the ODE specified by
he neural network to parameterize the continuous dynamic change
f the hidden unit. This method enables us to effectively learn the
ontinuous change dynamic of node representations. Based on these
onsiderations, we define an ODE in 𝑝 to solve the node embedding
rajectories, which adaptively fuse them with a gated mechanism. Here,
e treat the encoder 𝐸𝑡𝑝 as the initial value of ODE 𝐻 𝑡𝑝 (0), i.e., 𝐻 𝑡𝑝 (0) =
𝑡𝑝 . Then, inherent characteristics will inhibit the functionality of both

atest interaction and neighbor features. Inspired by Xhonneux et al.
2020) we use a differential equation defined as follows to learn the
ontinuous node representations in the interval of interactions:

d𝐻 𝑡𝑝 (𝑡)
d𝑡

= 𝑧𝑙 ⊙𝐻 𝑡𝑝 (0)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

latest interaction

+ 𝑧𝑛 ⊙ 𝐴𝑝𝐻
𝑡𝑝 (𝑡)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
neighbor features

− 𝑧𝑖 ⊙𝐻 𝑡𝑝 (𝑡)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

inherent characteristics

,
(6)

where 𝐻 𝑡𝑝 (0) represents the latest interaction information of nodes,
𝐻 𝑡𝑝 (𝑡) represents the inherent characteristics of nodes, while 𝐴𝑝𝐻

𝑡𝑝 (𝑡)
nly denotes the influence from neighbors on a specific node where the
ode state is always affected by their neighbors’ features over time.
s a result, neighbor features do not contain any information about

nherent characteristics in Eq. (6). ⊙ denotes the element-wise product
peration. It is noted that ‘‘+/-’’ in Eq. (6) indicates the direction of
hree factors (‘‘+’’ means the latest interaction and neighbor features
re in the same direction to mutually promote each other; ‘‘-’’ means the
nherent characteristics will inhibit the functionality of aforementioned
wo factors) rather than indicating a degree of importance. 𝑧𝑙, 𝑧𝑛, and
𝑖 represents three gates, respectively. They are computed as:

𝑧𝑙 = 𝜎(𝑊𝑙𝐻
𝑡𝑝 (0) + 𝑏𝑙), (7)

𝑛 = 𝜎(𝑊𝑛𝐻
𝑡𝑝 (0) + 𝑏𝑛), (8)

𝑧𝑖 = 𝜎(𝑊𝑖𝐻
𝑡𝑝 (0) + 𝑏𝑖), (9)

here 𝑊𝑙 ,𝑊𝑛,𝑊𝑖 and 𝑏𝑙 , 𝑏𝑛, 𝑏𝑖 are trainable parameters, and 𝜎(⋅) is the
igmoid activation function to normalize the output into [0, 1]. The
5

ated fusion mechanism can adaptively fuse three factors according to
heir importance calculated by the initial value of ODE. In addition,
he updating process starts at the timestamp of the latest interaction
f the node. To this end, following (Rossi et al., 2020), when an
nteractive message comes, we use the latest interaction information
o update node embeddings and save the current interaction message
or the next time the node appears. Meanwhile, due to the integration
f time encoding in 𝐻 𝑡𝑝 (0), the temporal behaviors of nodes could be
aptured. As a result, we can leverage the aforementioned ODE to learn
he nodes’ state trajectories at the interval [0, 𝛥𝑡], and the three main
actors mentioned above jointly capture the continuous dynamic of
ode representations. Then the node representations are updated by
DE solver as follows:
𝑡𝑝 (𝛥𝑡) = ODESolve(𝑔(𝑡),𝐻 𝑡𝑝 (0), 𝛥𝑡) (10)

here 𝑔(𝑡) = d𝐻 𝑡𝑝 (𝑡)
d𝑡 .

Finally, we use the hidden state at the end time 𝐻(𝛥𝑡𝑝) to update
the previous embedding memory 𝐻̄ 𝑡𝑝−1 as 𝐻̄ 𝑡𝑝 (i.e., 𝐻̄ 𝑡𝑝 = 𝐻(𝛥𝑡𝑝)) (line
5 in Algorithm 1).

4.4. Transform: Graph attention layer

After capturing the continuous dynamic of node representations
from the latest interaction sets and updating the embeddings of nodes,
a graph attention layer in transform module (Fig. 2 right) is applied to
convert the historical observed interaction features of nodes to generate
future representations (Line 6 and 16–23 in Algorithm 1).

In this module, for the current interaction 𝑒 connected by 𝑢 and 𝑣
at time 𝑡, their temporal neighbors and the interaction information be-
tween them is token as input. We introduce a self-attention mechanism
to distinguish different neighbors, and take account of the structural
information with temporal information (Xu et al., 2020). For node 𝑢
at time 𝑡, we consider its neighbors 𝑁(𝑢, 𝑡) = {𝑖0,… , 𝑖𝑘−1}, where the
interactions between 𝑢 and 𝑖𝑗 ∈ 𝑁(𝑢, 𝑡) occurred at time 𝑡𝑗 prior to
time 𝑡, and the sampling process of temporal neighbors of node 𝑖 is
he same as 𝑢. Then we take the node information with time 𝑡 encoding
𝑧𝑡𝑢 = ℎ̄𝑡𝑢 ||𝐹𝑇 (𝑡) and the neighborhood information with the time interval
−𝑡𝑗 encoding 𝑍𝑡

𝑁 = 𝐻̄ 𝑡
𝑁(𝑢,𝑡) || 𝑓

𝑢𝑁(𝑢,𝑡)
||𝐹𝑇 (𝑡−𝑡𝑗) as the input of attention,

here the time interval 𝑡 − 𝑡𝑗 is between current interaction 𝑒 and
he interaction of 𝑢 and its neighbors 𝑖𝑗 ∈ 𝑁(𝑢, 𝑡). In attention, three
ifferent linear projections are used to obtain the query 𝑄𝑡, key 𝐾𝑡,
nd value 𝑉𝑡:

𝑡 = 𝑍𝑡
𝑢𝑊𝑄, 𝐾𝑡 = 𝑍𝑡

𝑁𝑊𝐾 , 𝑉𝑡 = 𝑍𝑡
𝑁𝑊𝑉 , (11)

here 𝑊𝑄,𝑊𝐾 ,𝑊𝑉 are the weight matrices. The attention weights 𝛼𝑗
s given by:

𝑗 =
exp(𝑞T𝐾𝑗∕

√

𝑑)
∑

𝑐 exp
(

𝑞T𝐾𝑐∕
√

𝑑
) , (12)

here the attention weight 𝛼𝑗 reveals how node 𝑢 attends to the
eatures of node 𝑖𝑗 within the topological structure defined as 𝑁(𝑢, 𝑡)

after accounting for their interaction time with 𝑖𝑗 . Specifically, we have
updated the target node by considering the three-fold factors (i.e., lat-
est interaction, neighbor features, and inherent characteristics) in the
update module. In the transfer module, the inputs already incorporate
both the inherent characteristics and the latest interaction. Therefore,
the layer produces the time-aware representation of node 𝑢 at time 𝑡,
ℎ̂𝑡𝑢, which represents the future hidden representations generated by
historical observed interactions as follows:

ℎ̂𝑡𝑢 =
𝑘−1
∑

𝑗=0
𝛼𝑗𝑉𝑡, (13)

To stabilize the learning process and improves performances, we
extend the self-attention mechanism to be multi-head ones (Vaswani
et al., 2017). Specifically, we concatenate 𝑀 parallel attention mecha-
nisms with different learnable projections:

Neural Networks 172 (2024) 106151Z. Wang et al.

h
t

ℎ
i
a
a

4

e
e
t



t

4

p

c
A
i
d
i

s
b
a
t
t
𝑚

𝑂
O

5

f
W
a
p
t

5

l
t
n
n
w

1
1

1
1
1
1
2

2
2
2

ℎ̂𝑡𝑢 = ||

𝑀
𝑚=1

{𝑘−1
∑

𝑗=0
𝛼(𝑚)𝑗 𝑉 (𝑚)

𝑡

}

, (14)

where 𝑉 (𝑚)
𝑡 represent the value with different projections in the 𝑚th

ead attention, and 𝛼(𝑚)𝑗 represent the attention weight calculated by
he query and key with different projections in the 𝑚th head attention.

Finally, the future node embeddings 𝐻̂ 𝑡𝑝
𝑢 is generated by calculating

̂ 𝑡𝑝𝑢 for each node in interactions (line 6 in Algorithm 1). The latest
nteractive node 𝑟𝑢 and 𝑟𝑖 are updated as 𝑖 and 𝑢, respectively. In
ddition, the latest interactive timestamps 𝜏𝑢 and 𝜏𝑖 are both updated
s 𝑡𝑝 (Lines 7–8 Algorithm 1).

.5. Binary cross-entropy loss function

In this work, we adopt time-sensitive link prediction binary cross-
ntropy loss function to learn ConTIG’s parameters. The binary cross-
ntropy loss function is defined as follows and our goal is to maximize
his likelihood function:

=
∑

(𝑢𝑝 ,𝑖𝑝 ,𝑡𝑝)∈
− log 𝜎(−ℎ̂

𝑡𝑝𝖳
𝑢𝑝 ℎ̂

𝑡𝑝
𝑖𝑝
)

− 𝑄E𝑖𝑞∼𝑃 (𝑖) log 𝜎(ℎ̂
𝑡𝑝𝖳
𝑢𝑝 ℎ̂

𝑡𝑝
𝑖𝑞
),

(15)

where the summation is over the observed edges on 𝑢𝑝 and 𝑖𝑝 that
interact at time 𝑡𝑝, 𝑄 is the number of negative samples and 𝑃 (𝑖) is
he negative sampling distribution over the node space.

.6. Complexity analysis

The time complexity of our proposed method mainly consists of two
ortions.

First, for the update module (i.e., continuous inference block), we
onsider that both adjacency matrices are stored as sparse matrices.
nd the runtime of the ODE solver depends on the length on the time

nterval (i.e., the end time of ODE solver) 𝛥𝑡 and the complexity of the
ynamics. Then, the time complexity of the continuous inference block
s 𝑂(𝛥𝑡 ||).

Second, for the transform module (i.e., graph attention layer),
ince the masked self-attention operation is parallelizable, as suggested
y Vaswani et al. (2017). The per-batch time complexity of the graph
ttention layer with 𝑚 heads can be expressed as 𝑂(𝑚𝑘), where 𝑘 is
he average neighborhood size. Since the batch is divided by edges,
he time complexity of the graph attention layer is 𝑂(𝑚𝑘 ||), where
≪ || and 𝑘 ≪ ||.
Therefore, the time complexity of ConTIG is 𝑂((𝛥𝑡 + 𝑚𝑘) ||) ≈

(𝐶 ||), where 𝐶 is a constant and is relative to the runtime of the
DE Solver.

. Experiments

In this section, we will utilize four networks to compare the per-
ormance of our model with four static and five temporal methods.

e conduct three main tasks, link prediction, node recommendation,
nd node classification, to evaluate the influence of introducing tem-
oral information and learn continuous dynamic of node embedding
rajectories.

.1. Experimental setup

Datasets We evaluate the performance of ConTIG on temporal
ink prediction, node recommendation and dynamic node classification
asks with four public datasets, where three datasets are user-item
etworks selected by Kumar et al. (2019) and one dataset is e-mail
etwork. The statistics of the four datasets are summarized in Table 2,
here the number of interactions is  .
6

| |
Algorithm 1 Continuous Representation Learning on Temporal Inter-
action Graphs
Input: Interaction Stream 𝑒 = (𝑢, 𝑖, 𝑡, 𝑓 𝑢𝑖) ∈  in temporal interaction
graph  = ( , )
Output: Node Embeddings ℎ̂𝑡𝑣,∀𝑣 ∈ 
1: ℎ̄0𝑣 ← 𝑥𝑣, 𝑟𝑣 ← 0, 𝜏𝑣 ← 0,∀𝑣 ∈ 
2: for 𝑒𝑝 = (𝑢, 𝑖, 𝑡𝑝, 𝑓 𝑢𝑖) in 
3: Learning 𝐹𝑇 (𝑡𝑝 − 𝜏𝑣) by Eqn.(1)
4: 𝐸

𝑡𝑝
𝑣 = 𝑓 (ℎ̄

𝑡𝑝−1
𝑣 || ℎ̄

𝑡𝑝−1
𝑟𝑣 || 𝑓 𝑣𝑟𝑣

||𝐹𝑇 (𝑡𝑝 − 𝜏𝑣)),∀𝑣 ∈ 
5: ℎ̄

𝑡𝑝
𝑢 , ℎ̄

𝑡𝑝
𝑖 ← Continuous Inference Block (𝐸𝑡𝑝 , 𝑢, 𝑖)

6: ℎ̂
𝑡𝑝
𝑢 , ℎ̂

𝑡𝑝
𝑖 ← Graph Attention Layer (ℎ̄𝑡𝑝𝑢 , ℎ̄

𝑡𝑝
𝑖 , 𝑢, 𝑖, 𝑡𝑝)

7: 𝑟𝑢 ← 𝑖, 𝜏𝑢 ← 𝑡𝑝
8: 𝑟𝑖 ← 𝑢, 𝜏𝑖 ← 𝑡𝑝
9: end for

10: return ℎ̂𝑡𝑣,∀𝑣 ∈ 
11: Continuous Inference Block(𝐸𝑡𝑝 , 𝑢, 𝑖)
2: ℎ𝑣(0) ← 𝐸

𝑡𝑝
𝑣 , 𝑣 ∈ 

3: (𝑣, 𝑟𝑣),∀𝑣 ∈  generates 𝐴𝑝 by Eqn.(4)-(5)
14: ℎ𝑣(𝛥𝑡) ← ODESolve(𝑔(𝑡), ℎ𝑣(0), 𝛥𝑡), ∀𝑣 ∈ 
15: return ℎ𝑢(𝛥𝑡), ℎ𝑖(𝛥𝑡)
6: Graph Attention Layer(ℎ̄𝑡𝑢, ℎ̄

𝑡
𝑖, 𝑢, 𝑖, 𝑡)

7: for 𝑣 in {𝑢, 𝑖}
8: Sample 𝑘 temporal neighbors 𝑁(𝑣, 𝑡)
9: 𝑧𝑡𝑣 ← ℎ̄𝑡𝑣 ||𝐹𝑇 (𝑡)
0: 𝑍𝑡

𝑁(𝑣,𝑡) ← 𝐻̄ 𝑡
𝑁(𝑣,𝑡) || 𝑓

𝑣𝑁(𝑣,𝑡)
||𝐹𝑇 (𝑡 − 𝑡𝑗)

1: ℎ̂𝑡𝑣 ← Attn(𝑧𝑡𝑣, 𝑍
𝑡
𝑁(𝑣,𝑡), 𝑍

𝑡
𝑁(𝑣,𝑡))

2: end for
3: return ℎ̂𝑡𝑢, ℎ̂

𝑡
𝑖

• Wikipedia.3 The dataset describes the interactions between ac-
tive users and pages they edit the contents with unique times-
tamps and the dynamic labels indicating whether a user is banned
from editing.

• Reddit.4 The dataset describes the interactions between active
users and the posts they submit on subreddits and the dynamic
labels indicating if users are banned from posting.

• Mooc.5 The dataset describes the interactions between students
and MOOC online courses, e.g., viewing a video, submitting an
answer, etc.

• CollegeMsg.6 The dataset is an online social network at the
University of California and describes the interaction between
users by sending private messages at different timestamps. The
dataset is without node labels and edge features.

Baselines To evaluate the performance of ConTIG, we compare our
method with state-of-the-art graph embedding methods on both static
and temporal graphs.

Static graph embedding methods: GAE (Kipf & Welling, 2017)
utilizes GCN to encode the graph and then decodes it with the transpose
of the node hidden feature product to reconstruct the adjacency matrix
of the graph. VGAE (Kipf & Welling, 2016) employs VAE to capture
the key features of nodes within the graph. Different from GAE (Kipf &
Welling, 2017), VGAE encodes the content as parameters of a Gaus-
sian distribution rather than fixed node parameters in the encoding
phase. GraphSAGE (Hamilton et al., 2017a) samples a fixed number
of neighbors for each node level in the graph, and updates the node
representation by combining the aggregated neighbor node features

3 http://snap.stanford.edu/jodie/wikipedia.csv
4 http://snap.stanford.edu/jodie/reddit.csv
5 http://snap.stanford.edu/jodie/mooc.csv
6
 https://snap.stanford.edu/data/CollegeMsg.html

http://snap.stanford.edu/jodie/wikipedia.csv
http://snap.stanford.edu/jodie/reddit.csv
http://snap.stanford.edu/jodie/mooc.csv
https://snap.stanford.edu/data/CollegeMsg.html

Neural Networks 172 (2024) 106151Z. Wang et al.

a

t
m

Table 2
Statistics of the datasets.

Datasets || || Feature Label

Wikipedia 9,227 157,474 172 2
Reddit 10,984 672,447 172 2
Mooc 7,144 411,749 0 2
CollegeMsg 1,899 59,835 0 0

with the features of the target node itself. GAT (Velickovic et al.,
2018) uses the attention mechanism to calculate the attention scores
of neighbor nodes to the target node. These scores are subsequently as
weights to aggregate the features of the neighboring nodes.

Temporal graph embedding methods: CTDNE (Nguyen et al.,
2018) defines the temporal random walk requiring the walks to obey
the temporal order. JODIE (Kumar et al., 2019) learns to generate em-
bedding trajectories of all users and items from temporal interactions by
update and project operations. DyRep (Trivedi et al., 2019) uses deep
recurrent architecture and attention mechanism to effectively model
fine-grained temporal dynamic. TGAT (Xu et al., 2020) introduces a
self-attention mechanism and a functional time encoding technique
to learn the time-feature interactions. TGN (Rossi et al., 2020) is a
generic inductive framework operating on continuous-time dynamic
graphs (Kazemi et al., 2020) represented as a sequence of events.

Parameter Settings For parameter settings, the dimension of both
node representations and time representations are determined by grid
search in the range of 16, 64, 128, 172, 256, 512 following (Rossi
et al., 2020; Xu et al., 2020). The optimizer is Adam algorithm, learning
rate is 0.0001, and dropout probability is 0.1. In continuous inference
block, parameter 𝛽 in adjacency matrix regularization is 0.95, and the
end time of ODE is set as 1.0 instead of the real interval 𝛥𝑡. In graph
ttention layer, the number of selected neighbors 𝑘 is set as 15 and

heads 𝑀 in attention is set as 2, and the negative sampling distribution
𝑃 (𝑖) is a uniform distribution.

Settings for Baselines For static baselines, we adopt the same
baseline training procedures as in Xu et al. (2020). We refer to the
PyTorch geometric library for implementing the GAE and VGAE base-
lines, and develop off-the-shelf implementation for GraphSAGE and
GAT by referencing their original implementations to accommodate the
temporal setting and incorporate edges features. For dynamic baselines,
we use the open-source implementations for CTDNE and use the source
code released by the authors to implement TGAT and TGN, where
we implement JODIE and DyRep in the version of TGN in PyTorch
following TGN.

Implementation All our experiments are implemented on a 32g-
MEM Ubuntu 20.04 server with Intel(R) Core(TM) i7-9700K CPU @
3.60 GHz and NVidia(R) 2080Ti GPUs. All code is implemented in
PyTorch version 1.5.1.

5.2. Temporal link prediction

The goal of the temporal link prediction task is to predict the
probability that there exists a link between the two nodes given two
nodes and a certain timestamp in the future. For this task, we evaluate
our method on both the transductive and inductive settings. In the
transductive task, we predict the links between nodes observed during
training. In the inductive task, we predict the links between new nodes
which have not been observed in the past. Our model is tuned on the
validation set and we report the average precision (AP) on the test
set. We divide the training, validation, and testing sets into a 70%-
15%–15% split. After the division, the nodes that do not appear in
the training set are considered as new nodes. The model is trained by
temporal link prediction.

The results comparison between our method and baseline meth-
ods in temporal link prediction tasks are shown in Table 3. We ob-
serve that: (1) static graph embedding methods including GAE, VGAE,
7

Fig. 3. A t-SNE plot of three node representations under dynamic changes over time
with ConTIG on the Wikipedia dataset. The larger the number on the data, the longer
the training time. The length of the line represents the distance that the node moves.
The trajectory of the three node representations during the training phase is relatively
steady, indicating the robustness of ConTIG in handling dynamic changes over time.

GraphSAGE, and GAT, perform worse than those baselines model-
ing temporal interaction information. Because most of the interac-
tions in the real-world networks are time-stamped; (2) among the
dynamic graph embedding works, both temporal neighbor information
(i.e., CTDNE, TGAT) and latest interaction information (i.e., JODIE,
DyRep) methods perform worse than fusing methods (i.e., TGN, Con-
TIG); and (3) ConTIG achieves the best prediction performance on
the datasets Wikipedia, Reddit, and CollegeMsg for both transductive
and inductive settings, and the second best performance on Mooc
for the inductive task. This observation demonstrates the advantage
of our proposed method compared to existing methods. In fact, by
considering the inherent node properties and modeling the three im-
portant factors (i.e., latest interaction, neighbor features, and inherent
characteristics) in temporal interaction graphs, our method can capture
the complex non-linear dynamics of node representations effectively,
thereby achieving superb performance.

Fig. 3 represents the visualization results of three node representa-
tions under dynamic changes over time with ConTIG on the Wikipedia
dataset. One of the key observations from Fig. 3 is the stability of these
trajectories of the three node representations (i.e., Node 0, 1, and (2)
during the training phase. For example in Fig. 3, the representation of
Node 0, 1, and 2 predominantly evolves within a confined area over
time respectively (e.g., the representation of Node 0 is restricted in the
upper-left corner of Fig. 3). This consistent pattern of evolution within
a limited space is indicative of the stability in our ConTIG model.

5.3. Temporal node recommendation

The goal of temporal node recommendation task is to predict the
top-K possible neighbors of node 𝑢 at 𝑡 given the node 𝑢 and future
timestamp 𝑡. This task is also used to evaluate the performance of
emporal network embedding methods. For this task, we evaluate all
ethods on transductive setting, each method outputs the user 𝑢’s

preference scores over all the items at time 𝑡 in test set. We sort scores
in a descending order and record the rank of the paired node 𝑢 and
𝑖. We evaluate the task on three user-item networks (i.e., Wikipedia,
Reddit, and Mooc), where CollegeMsg dataset is not included because
it is not a user-item network. set, and divide the training, validation,
and testing sets into a 70%-15%–15% split. Our evaluation metric in
this task is Recall@K, where 𝐾 ∈ {5, 10, 15, 20}.

The results comparison between our method and baseline methods
in temporal node recommendation task is shown in Fig. 4, showing that
our model ConTIG performs better than all the baselines. Compared
with the best competitors (i.e., TGN), the recommendation performance

Neural Networks 172 (2024) 106151Z. Wang et al.
Fig. 4. Recall@K for the transductive temporal node recommendation on Wikipedia, Reddit and Mooc.
Table 3
ROC AUC(%) and Average Precision(%) for the transductive temporal link prediction on Wikipedia, Reddit, Mooc, and CollegeMsg. The means and standard deviations are computed
for ten runs.

Task Methods Wikipedia Reddit Mooc CollegeMsg

AUC AP AUC AP AUC AP AUC AP

Tr
an

sd
uc

tiv
e

GAE 91.47 ± 0.3 91.12 ± 0.1 95.87 ± 1.2 96.57 ± 1.0 87.89 ± 0.6 90.70 ± 0.3 73.15 ± 1.5 70.00 ± 1.17
VGAE 82.43 ± 1.6 82.50 ± 4.0 92.70 ± 0.4 91.53 ± 0.7 88.21 ± 0.6 91.00 ± 0.3 74.07 ± 0.9 70.66 ± 1.0
GraphSAGE 92.00 ± 0.3 92.34 ± 0.3 97.75 ± 0.1 97.85 ± 0.1 56.17 ± 0.3 60.63 ± 0.2 62.38 ± 1.3 62.48 ± 0.9
GAT 92.76 ± 0.5 93.17 ± 0.5 97.90 ± 0.1 97.07 ± 0.1 67.24 ± 0.1 66.66 ± 0.8 78.09 ± 0.5 75.97 ± 0.7
CTDNE 82.36 ± 0.7 80.86 ± 0.7 85.32 ± 2.0 87.31 ± 1.4 88.97 ± 2.6 89.27 ± 2.0 81.88 ± 0.7 80.25 ± 0.8
JODIE 94.94 ± 0.3 94.65 ± 0.6 97.62 ± 0.2 97.07 ± 0.4 79.75 ± 2.8 74.85 ± 3.1 59.85 ± 6.0 54.50 ± 4.4
DyRep 94.22 ± 0.2 94.63 ± 0.2 98.01 ± 0.1 98.05 ± 0.1 80.57 ± 2.1 77.30 ± 2.2 54.75 ± 6.8 51.89 ± 4.8
TGAT 94.99 ± 0.3 95.29 ± 0.2 98.07 ± 0.1 98.17 ± 0.1 66.02 ± 1.0 63.82 ± 0.9 81.05 ± 0.6 79.16 ± 0.6
TGN 98.42 ± 0.1 98.50 ± 0.1 98.69 ± 0.1 98.73 ± 0.1 89.07 ± 1.6 86.96 ± 2.1 85.06 ± 5.9 85.38 ± 6.4
ConTIG (our work) 98.50 ± 0.2 98.62 ± 0.2 98.71 ± 0.3 98.75 ± 0.3 90.34 ± 1.6 88.87 ± 1.9 90.11 ± 1.2 90.54 ± 1.2

In
du

ct
iv

e

GraphSAGE 88.60 ± 0.3 88.94 ± 0.5 94.28 ± 0.4 94.51 ± 0.1 53.68 ± 0.4 55.35 ± 0.4 49.64 ± 1.5 51.83 ± 0.8
GAT 89.11 ± 0.5 89.82 ± 0.4 94.30 ± 0.4 94.58 ± 0.3 53.43 ± 2.1 54.80 ± 0.9 68.98 ± 1.2 66.22 ± 1.2
JODIE 92.75 ± 0.3 93.11 ± 0.4 95.42 ± 0.2 94.50 ± 0.6 81.43 ± 0.8 76.82 ± 1.4 51.59 ± 3.2 50.02 ± 2.2
DyRep 91.03 ± 0.3 91.96 ± 0.2 95.79 ± 0.5 95.75 ± 0.5 82.06 ± 1.7 79.17 ± 1.6 49.05 ± 4.1 49.30 ± 2.6
TGAT 93.37 ± 0.3 93.86 ± 0.3 96.46 ± 0.1 96.61 ± 0.2 69.09 ± 0.8 67.65 ± 0.7 72.27 ± 0.5 72.53 ± 0.6
TGN 97.72 ± 0.1 97.83 ± 0.1 97.54 ± 0.1 97.63 ± 0.1 89.03 ± 1.6 86.70 ± 2.0 78.54 ± 3.9 80.77 ± 3.7
ConTIG (our work) 98.44 ± 0.2 98.41 ± 0.2 98.26 ± 0.3 98.31 ± 0.2 86.77 ± 2.0 85.44 ± 2.0 83.63 ± 0.9 85.37 ± 0.9
Table 4
ROC AUC(%) for the transductive dynamic node classification on Wikipedia, Reddit,
and Mooc. The means and standard deviations are computed for ten runs.

Wikipedia Reddit Mooc

CTDNE 84.86 ± 1.5 54.38 ± 7.5 71.84 ± 1.0
JODIE 84.40 ± 0.9 61.51 ± 1.2 70.03 ± 0.5
DyRep 83.25 ± 0.5 60.86 ± 1.7 64.64 ± 1.4
TGAT 84.41 ± 1.5 65.98 ± 1.6 65.79 ± 0.5
TGN 87.56 ± 0.7 69.78 ± 0.8 63.93 ± 0.3
ConTIG (our work) 87.13 ± 0.6 69.99 ± 0.5 73.56 ± 0.4

of ConTIG improves by 110.51%, 13.13%, and 3.25% in terms of
Recall@5 on Mooc, Reddit, and Wikipedia. These significant improve-
ments verify that the differential equation fused with three factors
(i.e., latest interaction, neighbor features, and inherent characteristics)
proposed in ConTIG is capable of learning the trend of node state
trajectories in the network. Additionally, the significant improvement
of ConTIG benefits from the combination of continuous node state
modeling in update module and dynamic sub-graph structure capturing
in transform module on node embeddings, which is good for the
down-stream node recommendation task.

5.4. Dynamic node classification

The goal of dynamic node classification task is to predict the state
label of user given the user, item, and future timestamp. For this task,
we evaluate our method on transductive setting, predicting the state
labels of users who have been observed during training. We evaluate
the task on three datasets with dynamic node labels (i.e., Wikipedia,
8

Reddit, and Mooc), where CollegeMsg dataset is not included because
there is no node label, and divide the training, validation, and testing
sets into a 70%-15%–15% split. Specifically, we train a decoder after
the model trained by the temporal link prediction task. Our evaluation
metric in this task is the area under the ROC curve (AUC).

The results comparison between our method and baseline methods
in dynamic node classification tasks are shown in Table 4. Again,
our algorithm achieves the best or comparable performance compared
with existing dynamic graph embedding approaches, demonstrating its
effectiveness for the down-stream node classification task. s

5.5. Performance on long-interval interactions

The goal of this task is to observe the link prediction performance
of our method for interaction sets with different time intervals. To cate-
gorize the interactions, first, we calculate the time interval 𝛥𝑡 between
each interaction and its latest interaction as mentioned in Section 3,
and describe the distribution of the time intervals of interactions.
Then, we equally divide the interactions into five sets according to
the four quantiles: 20%, 40%, 60%, 80%, where the quantiles are cut
points dividing the interactions into continuous intervals with equal
probabilities in terms of the intervals 𝛥𝑡 of interactions. For example,
the interactions in 0%–20% set are of shorter intervals, while the inter-
actions in 80%–100% set are of longer intervals. Finally, we calculate
the AP score for each set.

Our results of comparison between our method and dynamic graph
baselines in temporal link prediction task on five interaction sets of
Wikipedia and CollegeMsg are shown in Fig. 5. Comparing the AP re-
sults in each set, we find that our method outperforms TGN, especially
in long-interval interactions (e.g., the frequency interval 60%–80%

and 80%–100%), demonstrating the superiority of ConTIG in capturing

Neural Networks 172 (2024) 106151Z. Wang et al.

b
m

Table 5
Average Precision(%) for both the transductive and inductive temporal link prediction on Wikipedia, Reddit, Mooc, and CollegeMsg.

Wikipedia Reddit Mooc CollegeMsg

Transductive Inductive Transductive Inductive Transductive Inductive Transductive Inductive

ConTIG w/o transform 95.99 96.76 98.25 97.88 82.33 75.22 87.66 67.65
ConTIG w/o update 95.19 95.03 95.85 93.36 75.51 73.10 82.78 80.90
ConTIG w/o adaptive 98.60 98.36 98.75 98.15 68.56 62.42 87.72 84.23
ConTIG w/o latest 98.50 98.45 98.45 97.79 90.25 86.76 90.66 85.42
ConTIG w/o neighbor 98.38 98.25 98.02 96.95 84.03 79.57 89.08 83.13
ConTIG w/o inherent 98.75 98.56 98.79 98.35 86.74 84.27 90.66 82.72
ConTIG 98.61 98.58 98.79 98.43 90.56 87.31 91.40 86.42
c
p

i
c
t
s
d
b
H
r
i

t
a
d
f
m
m

n

Fig. 5. Average Precision(%) for both the transductive and inductive temporal link
prediction on five interaction sets of Wikipedia and CollegeMsg, divided by quantiles
of time interval of the interaction.

continuous dynamics of node representations. And we argue that the
long-interval link prediction is more beneficial to practical applications
because quite a few users are always inactive on social networks,
citation networks, and other user-item interaction systems.

5.6. Ablation study

To further investigate the effect of each component in our model,
we compare ConTIG with its variants as follows:

• ConTIG w/o transform: ConTIG without the transform module
(i.e. graph attention layer).

• ConTIG w/o update: ConTIG without the update module (i.e. con-
tinuous inference block).

• ConTIG w/o adaptive: ConTIG without adaptively fusing three
factors in update module. We replace it by directly adding the
three factors in the update module.

• ConTIG w/o latest: ConTIG without the latest interaction factor
in update module.

• ConTIG w/o neighbor: ConTIG without the neighbor features
factor in update module.

• ConTIG w/o inherent: ConTIG without the inherent characteris-
tics factor in update module.

Table 5 shows the AP results of each model. ConTIG performs
etter than ConTIG w/o transform and ConTIG w/o update by a large
argin, which demonstrates the effectiveness of the main modules
9

of our model. Especially, the introduction of the continuous update
module significantly improves the results, indicating that the latest
knowledge between two consecutive interactions is an essential feature
to learn the node representations. By further modeling and aggregating
the historical interaction information of nodes, ConTIG consistently
improves the performance, showing the importance of the historical
interaction information.

Specifically, we investigate the effect of each component in update
module. By removing the adaptive fusion approach, the performance
of ConTIG w/o adaptive degrades obviously, pointing out that the
adaptive fusion is a key factor to the success of the ODE solver in
update module. It helps the network to focus on the most correlated
factor to update the node state, and adaptively fuses three factors in a
data-dependent way. Besides, ConTIG outperforms ConTIG w/o latest,
ConTIG w/o neighbor and ConTIG w/o inherent by a small margin,
which indicates that the three factors are of great importance for
learning the change of node state in the update module. In particular,
by comparing ConTIG with ConTIG w/o latest, ConTIG w/o neighbor,
and ConTIG w/o inherent, respectively, we observe that the neighbor
features contribute most to the performance in all datasets, which indi-
cates the importance of neighbors in the latest changing of node states.
For ConTIG w/o inherent, we observe that it has obvious effects on the
datasets without edge features (i.e., Mooc and CollegeMsg), although it
has tiny effects on the datasets with edge features (i.e., Wikipedia and
Reddit).

5.7. Parameter sensitivity

There are several hyper-parameters in our proposed method. It is
necessary to analyze how these parameters influence the performance
of our model in temporal link prediction task on the above datasets. In
detail, these parameters include the end time 𝛥𝑡 in continuous inference
block, the number of neighbors 𝑘, heads 𝑀 in graph attention layer,
node embedding dimension 𝑑, and time embedding dimension 𝑑𝑇 . We
hoose different values for them and use the AP score to evaluate their
erformance.
End time in continuous inference block (See Section 4.3). An

mportant parameter is how long used to update the node states in the
ontinuous inference block. In our experiment, the 𝛥𝑡 ranges from 0.6
o 1.6 and the node and time embedding dimension is fixed to 172. As
hown in Fig. 6(a), as 𝛥𝑡 is larger, the AP score first increases and then
ecreases, demonstrating that more time for learning node changes
etween two consecutive interactions could yield better performance.
owever, when the updating time is very long, it would make the cur-

ent node over rely on the latest information, and forget the historical
nformation, which hinders the performance.
Heads in graph attention layer (See Section 4.4). Fig. 6(b) show

he AP results under different number of heads 𝑀 in the multi-head
ttention. We observed that the AP score first increases and then
ecreases or stabilizes, and there is a relatively stable and good per-
ormance at two-head attention. It means that less-head attention will
ake the results unstable and offset, but attention with many heads
ay pay attention to useless or unrelated information.
Number of neighbors (See Section 4.4). The influence of the

umber of neighbors will then be evaluated, which controls the amount

Neural Networks 172 (2024) 106151Z. Wang et al.
Fig. 6. Average Precision(%) for both transductive and inductive temporal link
prediction on Wikipedia and Mooc with different hyper-parameters.

of historical interactive information is considered in the transform
module. As shown in Fig. 6(c), in general, as the number of neighbor-
hood 𝑘 becomes larger, the model could achieve better performance
because more historical information is considered. However, when the
10
Fig. 7. Mean time over one epoch during the entire ConTIG training on Wikipedia
with different || for training.

number of neighborhood is very large, it would introduce useless or
overdue information into the learning process and thus degrade the
performance.

Node embedding dimension. The influence of different node em-
bedding dimensions (e.g., 16, 64, 128, 172, 256, and 512) on our
model is shown in Fig. 6(d). We discover the same trend on two
datasets that as the dimension rises from a small value, the performance
of ConTIG will improve rapidly and becomes relatively stable while
the size is large. The reason is that a higher dimension enables the
model to learn more information in the latent space. However, it would
make computational consumption become very large, so we choose a
reasonable dimension with the best performance (i.e., 172).

Time embedding dimension. The influence of different time em-
bedding dimensions 16; 64; 128; 172; 256; 512 on our model is shown
in Fig. 6(e). We observe the similar results with node embedding
dimension, as 𝑑𝑇 is larger, the AP score first increases and then tends
to be stable. Different from node embedding dimension, there is a
fluctuation in the high-dimension time embedding on Wikipedia and
low-dimension time embedding on Mooc, which means high dimension
and low dimensions may both hinder the performance, and shows
the importance of choosing a reasonable time embedding dimension
(i.e., 172).

5.8. Complexity evaluation

Here, we examine how the training time of ConTIG depends on
the number of edges || which are used for training. We record the
runtimes of ConTIG for training one epoch on the Wikipedia dataset
using the best parameters in Section 5.7. Fig. 7 shows that the entire
runtime for one-epoch training is close to linear with ||. This evalua-
tion demonstrates our method’s advantage of being scalable to process
long edge streams.

6. Conclusion

In this paper, we present ConTIG, a novel representation learn-
ing method to capture the continuous dynamic of node embedding
trajectories by identifying three-fold factors (i.e., latest interaction,
neighbor features, and inherent characteristics). ConTIG contains two
modules: a update module to learn the node embedding trajectories and
a transform module to generate the future representations according to
the historical interaction information. Experiments results demonstrate
that ConTIG achieves state-of-the-art performances, especially for long-
interval interactions on temporal link prediction tasks. In the future,
besides node state trajectory, we plan to pay more attention to com-
munity evolution, exploring the impact of community on individuals
during the graph evolution.

Neural Networks 172 (2024) 106151Z. Wang et al.

C

D

F

G

G

G

G

G

G

G

H

H

H

J

J

K

K

K

K

L

L

L

L

L

N

O

P

P

P

Q

Q

R

S

S

S

T

T

T

T

V

V

CRediT authorship contribution statement

Zihui Wang: Data curation, Investigation, Methodology, Writing –
review & editing, Resources, Software. Peizhen Yang: Investigation,
Methodology, Software, Writing – review & editing. Xiaoliang Fan:
Conceptualization, Funding acquisition, Supervision, Writing – original
draft, Writing – review & editing, Project administration, Resources.
Xu Yan: Investigation, Methodology, Writing – original draft. Zonghan
Wu: Writing – review & editing. Shirui Pan: Writing – review & edit-
ing. Longbiao Chen: Writing – review & editing. Yu Zang: Writing –
review & editing. Cheng Wang: Writing – review & editing. Rongshan
Yu: Conceptualization, Writing – review & editing.

Declaration of competing interest

We declare that we have no financial and personal relationships
with other people or organizations that can inappropriately influence
our work, there is no professional or other personal interest of any
nature or kind in any product, service and/or company that could be
construed as influencing the position presented in, or the review of, the
manuscript entitled.

Data availability

Data will be made available on request.

Acknowledgments

The research was supported by Natural Science Foundation of China
(62272403, 61872306), and Fundamental Research Funds for the Cen-
tral Universities, China (20720200031).

References

Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., & Smola, A. J.
(2013). Distributed large-scale natural graph factorization. In Proceedings of the
22nd international conference on world wide web (pp. 37–48).

An, J., Liu, W., Liu, Q., Guo, L., Ren, P., & Li, T. (2022). DGInet: Dynamic graph and
interaction-aware convolutional network for vehicle trajectory prediction. Neural
Networks, 151, 336–348.

Chen, R. T., Rubanova, Y., Bettencourt, J., & Duvenaud, D. K. (2018). Neural ordinary
differential equations. In Advances in neural information processing systems (pp.
6571–6583).

ui, P., Wang, X., Pei, J., & Zhu, W. (2018). A survey on network embedding. IEEE
Transactions on Knowledge and Data Engineering, 31(5), 833–852.

ing, Z., Han, Z., Ma, Y., & Tresp, V. (2021). Temporal knowledge graph forecasting
with neural ODE. arXiv preprint arXiv:2101.05151.

u, D., Zhou, D., & He, J. (2020). Local motif clustering on time-evolving graphs. In
Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining (pp. 390–400).

ao, C., Zhu, J., Zhang, F., Wang, Z., & Li, X. (2022). A novel representation learning
for dynamic graphs based on graph convolutional networks. IEEE Transactions on
Cybernetics, 1–14.

ong, M., Ji, S., Xie, Y., Gao, Y., & Qin, A. (2020). Exploring temporal information for
dynamic network embedding. IEEE Transactions on Knowledge and Data Engineering.

oyal, P., Chhetri, S. R., & Canedo, A. (2020). dyngraph2vec: Capturing network
dynamics using dynamic graph representation learning. Knowledge-Based Systems,
187, Article 104816.

oyal, P., Kamra, N., He, X., & Liu, Y. (2018). Dyngem: Deep embedding method for
dynamic graphs. arXiv preprint arXiv:1805.11273.

rover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In
Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining (pp. 855–864).

uo, J., Zhang, P., Li, C., Xie, X., Zhang, Y., & Kim, S. (2022). Evolutionary preference
learning via graph nested gru ode for session-based recommendation. In Proceedings
of the 31st ACM international conference on information & knowledge management (pp.
624–634).

uo, X., Zhou, B., & Skiena, S. (2021). Subset node representation learning over large
dynamic graphs. In Proc. of 2021 ACM SIGKDD int. conf. on knowledge discovery
and data mining (pp. 516–523).

amilton, W., Ying, Z., & Leskovec, J. (2017a). Inductive representation learning on
11

large graphs. (pp. 1024–1234).
amilton, W. L., Ying, R., & Leskovec, J. (2017b). Representation learning on graphs:
Methods and applications. arXiv preprint arXiv:1709.05584.

uang, Z., Sun, Y., & Wang, W. (2021). Coupled graph ode for learning interacting
system dynamics. In Proceedings of the 27th ACM SIGKDD conference on knowledge
discovery & data mining (pp. 705–715).

iang, L., Chen, K.-J., & Chen, J. (2021). Self-supervised dynamic graph representation
learning via temporal subgraph contrast. arXiv preprint arXiv:2112.08733.

iao, P., Guo, X., Jing, X., He, D., Wu, H., Pan, S., Gong, M., & Wang, W. (2021).
Temporal network embedding for link prediction via vae joint attention mechanism.
IEEE Transactions on Neural Networks and Learning Systems.

azemi, S. M., Goel, R., Jain, K., Kobyzev, I., Sethi, A., Forsyth, P., & Poupart, P.
(2020). Representation learning for dynamic graphs: A survey. Journal of Machine
Learning Research, 21(70), 1–73.

ipf, T. N., & Welling, M. (2016). Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308.

ipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph
convolutional networks. In International conference on learning representations.

umar, S., Zhang, X., & Leskovec, J. (2019). Predicting dynamic embedding trajec-
tory in temporal interaction networks. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining (pp. 1269–1278).

i, M. M., Huang, K., & Zitnik, M. (2022). Graph representation learning in biomedicine
and healthcare. Nature Biomedical Engineering, 1–17.

iu, Y., Ma, J., & Li, P. (2021). Neural higher-order pattern (motif) prediction in
temporal networks. arXiv preprint arXiv:2106.06039.

iu, M., Tu, Z., Xu, X., & Wang, Z. (2021). Learning representation over dynamic graph
using aggregation-diffusion mechanism. arXiv preprint arXiv:2106.01678.

iu, J., Xu, C., Yin, C., Wu, W., & Song, Y. (2020). K-core based temporal graph
convolutional network for dynamic graphs. IEEE Transactions on Knowledge and
Data Engineering, 34(8), 3841–3853.

u, Y., Wang, X., Shi, C., Yu, P. S., & Ye, Y. (2019). Temporal network embedding with
micro-and macro-dynamics. In Proceedings of the 28th ACM international conference
on information and knowledge management (pp. 469–478).

guyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., & Kim, S. (2018).
Continuous-time dynamic network embeddings. In Companion proceedings of the the
web conference 2018 (pp. 969–976).

ono, K., & Suzuki, T. (2020). Graph neural networks exponentially lose expressive
power for node classification. In International conference on learning representations.

aranjape, A., Benson, A. R., & Leskovec, J. (2017). Motifs in temporal networks. In
Proceedings of the tenth ACM international conference on web search and data mining
(pp. 601–610).

areja, A., Domeniconi, G., Chen, J., Ma, T., Suzumura, T., Kanezashi, H., Kaler, T.,
Schardl, T. B., & Leiserson, C. E. (2020). EvolveGCN: Evolving graph convolutional
networks for dynamic graphs. In AAAI (pp. 5363–5370).

erozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social
representations. In Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining (pp. 701–710).

in, Y., Ju, W., Wu, H., Luo, X., & Zhang, M. (2023). Learning graph ODE for
continuous-time sequential recommendation. arXiv preprint arXiv:2304.07042.

u, L., Zhu, H., Duan, Q., & Shi, Y. (2020). Continuous-time link prediction via
temporal dependent graph neural network. In Proceedings of the web conference
2020 (pp. 3026–3032).

ossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., & Bronstein, M. (2020).
Temporal graph networks for deep learning on dynamic graphs. arXiv preprint
arXiv:2006.10637.

ankar, A., Wu, Y., Gou, L., Zhang, W., & Yang, H. (2020). DySAT: Deep neural rep-
resentation learning on dynamic graphs via self-attention networks. In Proceedings
of the 13th international conference on web search and data mining (pp. 519–527).

pasov, S., Di Stefano, A., Liò, P., & Tang, J. (2020). GRADE: Graph dynamic
embedding. arXiv preprint arXiv:2007.08060.

u, X., You, Z.-H., Huang, D.-s., Wang, L., Wong, L., Ji, B., & Zhao, B. (2022).
Biomedical knowledge graph embedding with capsule network for multi-label drug-
drug interaction prediction. IEEE Transactions on Knowledge and Data Engineering,
56–66.

ang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale
information network embedding. In Proceedings of the 24th international conference
on world wide web (pp. 1067–1077).

ian, S., Wu, R., Shi, L., Zhu, L., & Xiong, T. (2021). Self-supervised representation
learning on dynamic graphs. In Proceedings of the 30th ACM international conference
on information & knowledge management (pp. 1814–1823).

ian, S., Xiong, T., & Shi, L. (2021). Streaming dynamic graph neural networks for
continuous-time temporal graph modeling. In 2021 IEEE international conference on
data mining (pp. 1361–1366). IEEE.

rivedi, R., Farajtabar, M., Biswal, P., & Zha, H. (2019). Dyrep: Learning representations
over dynamic graphs. In International conference on learning representations.

aswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is all you need. In Advances in neural information
processing systems (pp. 5998–6008).

elickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., & Bengio, Y. (2018).
Graph attention networks. In International conference on learning representations.

http://refhub.elsevier.com/S0893-6080(24)00075-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb1
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb2
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb3
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb4
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb4
http://arxiv.org/abs/2101.05151
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb6
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb7
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb8
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb9
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb9
http://arxiv.org/abs/1805.11273
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb11
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb12
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb13
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb14
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb14
http://arxiv.org/abs/1709.05584
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb16
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb16
http://arxiv.org/abs/2112.08733
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb18
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb19
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb19
http://arxiv.org/abs/1611.07308
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb21
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb22
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb23
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb23
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb23
http://arxiv.org/abs/2106.06039
http://arxiv.org/abs/2106.01678
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb26
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb27
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb28
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb29
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb29
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb29
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb30
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb31
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb32
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb32
http://arxiv.org/abs/2304.07042
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb34
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb34
http://arxiv.org/abs/2006.10637
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb36
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb36
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb36
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb36
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb36
http://arxiv.org/abs/2007.08060
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb38
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb39
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb39
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb39
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb39
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb39
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb40
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb40
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb40
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb40
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb40
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb41
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb41
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb41
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb41
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb41
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb42
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb42
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb42
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb43
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb43
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb43
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb43
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb43
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb44
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb44
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb44

Neural Networks 172 (2024) 106151Z. Wang et al.

W

W

X

X

X

X

Y

Y

Z

Z

Z

Z

Wang, L., Chang, X., Li, S., Chu, Y., Li, H., Zhang, W., He, X., Song, L., Zhou, J., &
Yang, H. (2021). TCL: Transformer-based dynamic graph modelling via contrastive
learning. arXiv preprint arXiv:2105.07944.

Wang, Y., Chang, Y.-Y., Liu, Y., Leskovec, J., & Li, P. (2021). Inductive representation
learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:
2101.05974.

Wang, Q., Huang, K., Chandak, P., Zitnik, M., & Gehlenborg, N. (2022). Extending the
nested model for user-centric XAI: a design study on GNN-based drug repurposing.
IEEE Transactions on Visualization and Computer Graphics, 29(1), 1266–1276.

en, W., Wang, W., Hao, Z., & Cai, R. (2023). Factorizing time-heterogeneous Markov
transition for temporal recommendation. Neural Networks, 159, 84–96.

u, Z., Pan, S., Chen, F., Long, G., Zhang, C., & Philip, S. Y. (2020). A comprehensive
survey on graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems, 32(1), 4–24.

honneux, L.-P., Qu, M., & Tang, J. (2020). Continuous graph neural networks. In
International conference on machine learning (pp. 10432–10441). PMLR.

u, D., Liang, J., Cheng, W., Wei, H., Chen, H., & Zhang, X. (2021). Transformer-
style relational reasoning with dynamic memory updating for temporal network
modeling. In Proceedings of the AAAI conference on artificial intelligence, vol. 35, no.
5 (pp. 4546–4554).

u, D., Ruan, C., Korpeoglu, E., Kumar, S., & Achan, K. (2019). Self-attention with
functional time representation learning. Advances in Neural Information Processing
Systems, 32.
12
u, D., Ruan, C., Körpeoglu, E., Kumar, S., & Achan, K. (2020). Inductive representation
learning on temporal graphs. In International conference on learning representations.

ang, C., Wang, C., Lu, Y., Gong, X., Shi, C., Wang, W., & Zhang, X. (2022). Few-shot
link prediction in dynamic networks. In Proceedings of the fifteenth ACM international
conference on web search and data mining (pp. 1245–1255).

ang, M., Zhou, M., Kalander, M., Huang, Z., & King, I. (2021). Discrete-time temporal
network embedding via implicit hierarchical learning in hyperbolic space. In
Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining
(pp. 1975–1985).

ang, C., & Wang, F. (2020). Neural dynamics on complex networks. In Proceedings of
the 26th ACM SIGKDD international conference on knowledge discovery & data mining
(pp. 892–902).

hang, Z., Bu, J., Li, Z., Yao, C., Can, W., & Wu, J. (2021). TigeCMN: On exploration
of temporal interaction graph embedding via coupled memory neural networks.
Neural Networks, 140, 13–26.

hang, C., Xue, S., Li, J., Wu, J., Du, B., Liu, D., & Chang, J. (2023). Multi-
aspect enhanced graph neural networks for recommendation. Neural Networks, 157,
90–102.

Zhou, D., Zheng, L., Han, J., & He, J. (2020). A data-driven graph generative model for
temporal interaction networks. In Proceedings of the 26th ACM SIGKDD international
conference on knowledge discovery & data mining (pp. 401–411).

hu, L., Guo, D., Yin, J., Ver Steeg, G., & Galstyan, A. (2016). Scalable temporal latent
space inference for link prediction in dynamic social networks. IEEE Transactions
on Knowledge and Data Engineering, 28(10), 2765–2777.

http://arxiv.org/abs/2105.07944
http://arxiv.org/abs/2101.05974
http://arxiv.org/abs/2101.05974
http://arxiv.org/abs/2101.05974
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb47
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb47
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb47
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb47
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb47
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb48
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb48
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb48
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb49
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb49
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb49
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb49
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb49
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb50
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb50
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb50
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb51
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb52
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb52
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb52
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb52
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb52
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb53
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb53
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb53
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb54
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb54
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb54
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb54
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb54
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb55
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb56
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb56
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb56
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb56
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb56
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb57
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb57
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb57
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb57
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb57
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb58
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb58
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb58
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb58
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb58
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb59
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb59
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb59
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb59
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb59
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb60
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb60
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb60
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb60
http://refhub.elsevier.com/S0893-6080(24)00075-3/sb60

	ConTIG: Continuous representation learning on temporal interaction graphs
	Introduction
	Related Work
	Static Graph Embedding
	Temporal Graph Embedding
	Neural ODE

	Problem Definition
	The Proposed Model
	Overview of the ConTIG
	Encoder-Decoder
	Update: Continuous Inference Block
	Transform: Graph Attention Layer
	Binary Cross-Entropy Loss Function
	Complexity Analysis

	Experiments
	Experimental Setup
	Temporal Link Prediction
	Temporal Node Recommendation
	Dynamic Node Classification
	Performance on Long-interval Interactions
	Ablation Study
	Parameter Sensitivity
	Complexity Evaluation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

