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Abstract

Point cloud registration, a fundamental task in 3D computer
vision, has remained largely unexplored in cross-source point
clouds and unstructured scenes. The primary challenges arise
from noise, outliers, and variations in scale and density. How-
ever, neglected geometric natures of point clouds restrict the
performance of current methods. In this paper, we propose
a novel method, termed SPEAL, to leverage skeletal rep-
resentations for effective learning of intrinsic topologies of
point clouds, facilitating robust capture of geometric intri-
cacy. Specifically, we design the Skeleton Extraction Module
to extract skeleton points and skeletal features in an unsuper-
vised manner, which is inherently robust to noise and den-
sity variances. Then, we propose the Skeleton-Aware Geo-
Transformer to encode high-level skeleton-aware features. It
explicitly captures the topological natures and inter-point-
cloud skeletal correlations with the noise-robust and density-
invariant skeletal representations. Next, we introduce the Cor-
respondence Dual-Sampler to facilitate correspondences by
augmenting the correspondence set with skeletal correspon-
dences. Furthermore, we construct a challenging novel cross-
source point cloud dataset named KITTI CrossSource for
benchmarking cross-source point cloud registration methods.
Extensive quantitative and qualitative experiments are con-
ducted to demonstrate our approach’s superiority and robust-
ness on both cross-source and same-source datasets. To the
best of our knowledge, our approach is the first to facilitate
point cloud registration with skeletal geometric priors.

Introduction
Point cloud registration is an essential task in graphics,
vision, and robotics. It aims at estimating a rigid trans-
formation to align two partially overlapping frames of
point clouds. Recently, there has been a surge of interest
in learning-based point cloud registration methods. These
methods have made significant progress in addressing the
sparsity, partial overlap, and complex distribution of point
clouds in large outdoor scenes (Lu et al. 2021; Huang et al.
2021a; Yew and Lee 2022; Qin et al. 2022). However, the
practical application and advances in point cloud acquisition
present more challenges for point cloud registration, includ-
ing unstructured scenes and cross-source data.
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Figure 1: Impossible Triangle of Current Methods. Reg-
istration recalls under different settings are shown: KITTI
Odometry (Same-Source), KITTI CrossSource and the low-
overlap test split of KITTI CrossSource. Existing methods
fail to perform as well as SPEAL on all three challenging
circumstances.

In unstructured scenes, the complex natural scenes and
objects often make it difficult to learn discriminative fea-
tures for registration. This results in degraded performance
of registration algorithms. In the case of cross-source data,
challenges mainly arise from partial overlap, as well as con-
siderable differences in scale and density, leading to difficul-
ties in effective feature matching. The combination of noise
and outliers from different sources further downgrades the
quality of correspondences. Existing methods either focus
solely on same-source point clouds, or overlook the intrinsic
topological natures of the point clouds. This leads to subop-
timal results for challenging scenarios such as cross-source
point cloud registration and unstructured scenes.

We have observed that skeletons serve as an efficient and
robust geometric representation for point clouds, exhibit-
ing significant potential in various point cloud understand-
ing tasks (Shi et al. 2021; Lin et al. 2021). They can effec-
tively encode the geometric intricacy of point clouds. In-
spired by this, we propose a novel transformer-based ap-
proach, termed Skeletal Prior Embedded Attention Learning
(SPEAL), to address the aforementioned challenges. Our
method utilizes skeletal geometric priors to learn discrimina-
tive features for accurate and robust correspondences. To the



best of our knowledge, our approach is the first to facilitate
point cloud registration with skeletal geometric priors. Such
skeletal geometric priors encourage robust feature learning
by explicitly encoding the intrinsic topological characteris-
tics, thereby facilitating the correspondences and registra-
tion results, as shown in Fig. 1

Specifically, to incorporate skeletal representations as
a geometric prior, SPEAL comprises three key compo-
nents: Skeleton Extraction Module (SEM), Skeleton-Aware
GeoTRansformer (SAGTR), and Correspondence Dual-
Sampler (CDS). First, with the insights from the medial axis
transform (MAT) (Blum 1967), SEM extracts a set of skele-
ton points with skeletal features from input point clouds in
an unsupervised manner. It is robust to noise and density
variances. Next, SAGTR is designed to learn skeleton-aware
discriminative features, facilitating accurate and robust cor-
respondences. It explicitly captures the topological natures
and effectively learns inter-point-cloud geometric correla-
tions with our skeletal representations. Finally, CDS samples
reliable correspondences from both superpoints and skeleton
points, which produces reliable coarse correspondences with
awareness of the skeletal structure.

Extensive experiments are carried out on two datasets.
One is KITTI Odometry, a large-scale outdoor registration
benchmark (Geiger, Lenz, and Urtasun 2012), as well as its
cross-source variant named KITTI CrossSource proposed by
us. The other is a large-scale cross-source dataset mostly
consisting of unstructured forest scenes (Weiser et al. 2022).
The results demonstrate that SPEAL is effective and robust
for both same-source and cross-source point cloud registra-
tion, as well as for point clouds of unstructured scenes.

Overall, our contributions are threefold:
• We propose a novel learning-based point cloud registra-

tion approach, SPEAL, which is the first to utilize skele-
tal representations as a geometric prior to achieve im-
proved performance.

• The proposed SEM is an effective and portable skeleton
extractor. Our SAGTR combined with CDS effectively
produces accurate and robust correspondences for both
same-source and cross-source point cloud registration.

• KITTI CrossSource, a novel cross-source point cloud
dataset, meets the dire need (Huang et al. 2021b) of
cross-source point cloud registration benchmarks. This
opens up the possibility to bridge the gap between sensor
technology and cross-source applications.

Related Work
Learning-based Registration Methods. Learning-
based registration methods fall into two categories:
correspondence-based methods and direct registration
methods. Correspondence-based methods (Choy, Park,
and Koltun 2019; Deng, Birdal, and Ilic 2018a,b; Gojcic
et al. 2019; Yao et al. 2020) first extract correspondences
between two point clouds, and then estimate the transfor-
mation with robust pose estimators. However, traditional
robust estimators suffer from slow convergence and are
sensitive to outliers. To address this, deep robust estimators
(Choy, Dong, and Koltun 2020; Bai et al. 2021; Pais et al.

2020; Lee et al. 2021) utilize deep neural networks to
reject outliers and compute the transformation. While
these methods require a training procedure, they improve
accuracy and speed. Direct registration methods directly
estimate the transformation between two point clouds in an
end-to-end way. Inspired by Iterative Closest Point (Besl
and McKay 1992), some of them (Fu et al. 2021; Wang and
Solomon 2019b,a; Yew and Lee 2020) iteratively build soft
correspondences and then estimate the transformation with
SVD. Others (Xu et al. 2021; Aoki et al. 2019; Huang, Mei,
and Zhang 2020) extract a global feature vector and regress
the transformation directly with a neural network. However,
such methods could potentially fail in large-scale scenes.
Transformers in Point Cloud Registration. Originally de-
signed for NLP tasks, Transformers (Vaswani et al. 2017)
have shown remarkable efficacy in computer vision (Misra,
Girdhar, and Joulin 2021; Carion et al. 2020; Dosovitskiy
et al. 2020; Yu et al. 2021b). Recently, transformer-based
methods for point cloud registration have also emerged. Ge-
ometric Transformer (Qin et al. 2022) leverages transformer
layers for superpoint matching, while REGTR (Yew and Lee
2022) uses a transformer cross-encoder and a transformer
decoder to directly predict overlap scores. PEAL(Yu et al.
2023) leverages additional overlap priors from 2D images.
Point Cloud Skeletal Representations. The curve skeleton
is a widely-used skeletal representation due to its simplicity
(Huang et al. 2013; Ma, Wu, and Ouhyoung 2003; Au et al.
2008; Cao et al. 2010). It has shown its potential in some
learning-based methods (Xu et al. 2019; Shi et al. 2021)
like keypoint extraction. However, it is only well-defined
for tubular geometries, thus limiting its expressiveness for
point clouds with complex shapes or in large-scale scenes.
The Medial Axis Transform (MAT) (Blum 1967) is another
skeletal representation capable of encoding arbitrary shapes.
Some methods (Sun et al. 2015; Yan, Letscher, and Ju 2018;
Li et al. 2015) employ simplification techniques to alleviate
the distortion caused by surface noise, but they are compu-
tationally ineffective and require watertight input surfaces.
Recent learning-based efforts (Lin et al. 2021; Wen, Yu, and
Tao 2023) use deep neural networks to predict MAT-based
skeletons, thus greatly enhancing the robustness and com-
putational efficiency. These methods have shown promising
results in various 3D vision tasks, including shape recon-
struction and point cloud sampling (Wen, Yu, and Tao 2023).

Method
Problem Statement. Given two point clouds P = {pi ∈
R3|i = 1, . . . , N} and Q = {qi ∈ R3|i = 1, . . . ,M}, our
goal is to align the two point clouds by estimating a rigid
transformation T = {R, t}, where R ∈ SO(3) is a 3D
rotation matrix and t ∈ R3 is a 3D translation vector. The
transformation can be solved by:

min
R,t

∑
(pxi

,qyi
)∈C⋆

∥Rpxi
+ t− qyi

∥2, (1)

where C⋆ denotes the set of correspondences between two
point clouds P and Q. In reality, C⋆ is usually unknown.
Hence, we need to establish accurate correspondences C be-
tween two point clouds for a good transformation.



Figure 2: The Overall Pipeline of SPEAL. The backbone extracts superpoints and multi-level features from P and Q. Then,
SEM and SAGTR extract skeletal representations and learn discriminative skeleton-aware features, respectively. Finally, CDS
extracts hybrid coarse correspondences with skeletal priors. The result transformation is computed with LGR.

Overview and Notations. Our work leverages skeletal pri-
ors in an end-to-end neural network to facilitate correspon-
dences. The pipeline is shown in Fig. 2, following the hierar-
chical correspondence paradigm. To extract multi-level fea-
tures for point clouds, we leverage the KPConv-FPN back-
bone (Lin et al. 2017; Thomas et al. 2019). The points at
the coarsest level of the backbone are superpoints, denoted
as P̂ and Q̂. Their associated features are F̂P ∈ R|P̂|×dt

and F̂Q ∈ R|Q̂|×dt . Then, our proposed SEM, SAGTR and
CDS are used to extract reliable and accurate coarse cor-
respondences with skeletal priors. Finally, we employ the
Point Matching Module and Local-to-Global Registration
(Qin et al. 2022) to obtain dense correspondences and es-
timate the final rigid transformation.

Skeleton Extraction Module
The Skeleton Extraction Module aims to approximate the
Medial Axis Transform (MAT) by leveraging a convex com-
bination of input points, which provides a well-defined
skeletal representation for arbitrary shapes in an unsuper-
vised manner. Inspired by existing methods (Lin et al. 2021),
it overcomes the computational expense and sensitivity to
surface noise of traditional MAT computation.

Specifically, for all points in P̂ ∈ R|P̂|×3 and their fea-
tures F̂P ∈ R|P̂|×dt , SEM aims to extract Ns skeleton
points SP ∈ RNs×3, their skeletal features F̂P

s ∈ RNs×dt ,
and their radii RP ∈ RNs×1 . We extract skeletons for Q
in the same way. To this end, we employ a multi-layer per-
ceptron (MLP) to predict the weights W ∈ R|P̂|×Ns . The
MLP is shared across P̂ and Q̂. Then, the skeleton points
SP are obtained as the convex combination (Lin et al. 2021)
of input points P̂:

SP =WT P̂ s.t. j=1, . . . , Ns,
∑|P̂|

i=1
W(i, j) = 1 (2)

The weighting scheme enhances the robustness of skeleton
extraction by effectively filtering out noise and outliers. Sim-
ilarly, we extract their skeletal features by F̂P

s = WT F̂P .
To predict the radius of each skeleton point, we first com-

pute the closest distance for an input point p̂ to all skeleton
points as follows:

d(p̂,SP) = mins∈SP ∥p̂− s∥2. (3)
The distances for all input points are then summarized in
a vector DP ∈ R|P̂|×1. Next, the radii of all the skele-
ton points are computed through a linear combination of
their closest distances from all the input points, i.e., RP =
WTDP . This approximation is based on the observation that
the predicted weights for a skeleton point s are significant
only for the input points that in a local neighborhood of s,
and diminish to 0 for the input points far away from s.

The skeleton extraction is a fundamentally different task
from the point cloud registration. Therefore, the module is
separately supervised by the skeleton loss (Lin et al. 2021),
and we block the gradient flow from this module to the back-
bone for a more stable training process and better perfor-
mance (See supplementary materials).

Skeleton-Aware GeoTransformer
The registration of cross-source point clouds poses signif-
icant challenges, including noise, density differences, and
scale variances. Skeleton points exhibit consistency and ro-
bustness against these challenges. Therefore, we propose the
SAGTR module to encode the structure of point clouds. It
comprises two key components: Skeleton-aware Geometric
Self-Attention and Skeleton-aware Cross-Attention. They
are interleaved for Nt times to further extract non-skeletal
and skeletal hybrid features (HP ,HP

s ) and (HQ,HQ
s ).

These features encode inter-point-cloud and intra-point-
cloud correlations and skeletal geometric priors. They con-
tribute to accurate and robust coarse correspondences.



Figure 3: The structure (left) and computational graph
(right) of skeleton-aware geometric self-attention.

Skeleton-Aware Geometric Self-Attention. In the follow-
ing, we describe the computation for P̂ , and the computa-
tion for Q̂ is exactly the same. Given an input feature ma-
trix X ∈ RL×dt (L = |P̂| + Ns is the length of the in-
put sequence), the output feature matrix Z ∈ RL×dt is the
weighted sum of all projected input features:

zi =
∑L

j=1
ai,j(xjW

V ), (4)

where ai,j is the weight coefficient computed by a row-wise
softmax on the attention score ei,j , and ei,j is computed as:

ei,j = (xiW
Q)(xjW

K+rpi,jW
P +rsi,jW

S)T /
√

dt. (5)

Fig. 3 shows the computation of Skeleton-aware Geometric
Self-attention. Here, rsi,j ∈ Rs and rpi,j ∈ R are Skeleton-
Aware Structure Embedding and Point-Wise Structure Em-
bedding, respectively. We follow (Qin et al. 2022) to com-
pute rpi,j , which encodes non-skeletal geometric structures
between superpoints. rsi,j encodes skeletal latent geomet-
ric information of point clouds, which will be described
next. WQ,WK ,WV ,WP ,WS ∈ Rdt×dt are the respec-
tive projections for queries, keys, values, point-wise struc-
ture embedding and skeleton-aware structure embedding.

We design a novel approach, termed Skeleton-Aware
Structure Embedding, to encode skeletal latent structural in-
formation in the geometric space. The insight is to lever-
age the transformation invariance and robustness in the lo-
cal geometric structure formed by the skeleton points. This
embedding includes skeleton-wise distance embedding and
skeleton-wise angular embedding. They respectively capture
distance and angle information of the local geometric struc-
ture formed by skeleton points around superpoints.

Specifically, given two superpoints p̂i, p̂j∈P̂ , their k-NN
skeleton points are si1, . . . , s

i
k ∈ Ks

i and sj1, . . . , s
j
k ∈ Ks

j ,
respectively. Based on them, as shown in Fig. 4, the compu-
tation of skeleton-wise structure embedding rsi,j is twofold:
1) Skeleton-Aware Distance Embedding. For each super-
point pj , we first compute ρsj =

∑
sjx∈Ks

j
d(sjx,pj) , where

d(sjx,pj) = ∥sjx − pj∥2 denotes the distance between si
and pj in the Euclidean space. Then, the skeleton-aware dis-
tance embedding ds

j is computed by applying a sinusoidal
function on (ρsi − ρsj)/σ

s
d. 2) Skeleton-Aware Angular Em-

bedding. For each skeleton point sjx ∈ Ks
j , we first compute

Figure 4: The computation of skeleton-aware structure em-
bedding.

Figure 5: The structure (left) and computational graph
(right) of skeleton-aware cross-attention.

the angle θxi,j = ∠(sjx − pj ,pi − pj). Based on the angles,
the skeleton-wise angular embedding asi,j,x is computed by
applying a sinusoidal function on θxi,j/σ

s
a. Herein, σs

d and σs
a

control the sensitivity on skeleton-wise distances and angles
respectively. The final skeleton-aware structure embedding
rsi,j is the aggregation of the skeleton-aware angular embed-
ding as and the skeleton-aware distance embedding ds:

rsi,j = ds
i,jW

D +meanx{asi,j,xWA}, (6)

where WD and WA are trainable weights.
To help the successive cross-attention layers to capture the

geometric structure with skeletal priors, our skeleton-aware
self-attention layers also produce the skeleton-aware posi-
tional encoding E

′
by applying the attention scores on the

skeleton-aware structure embedding rsi,j :

E
′

i,k =
∑L

j=1
ai,j · rsi,j,k. (7)

Skeleton-Aware Cross-Attention. Several existing works
(Qin et al. 2022; Yew and Lee 2022) have utilized the cross-
attention mechanism for inter-point-cloud feature exchange.
However, they either lack positional encoding or fail to ex-
plicitly consider the geometric structure of point clouds,
leading to suboptimal performance. To address this, we pro-
pose the skeleton-aware cross-attention to explicitly learn
the correlation of point clouds with skeletal priors, as is
shown in Fig. 5.

Given feature maps with their skeleton-aware positional
encoding (XP ,E

′

P) and (XQ,E
′

Q) for P̂ and Q̂ respec-
tively. A skeleton-aware cross-attention layer first adds the



positional encoding to features to produce skeleton-aware
features X

′P and X
′Q. Then, the output for P̂ are computed

with the features of Q̂:

zPi =
∑|Q̂|

j=1
ai,j(x

′Q
j WV ). (8)

Similarly, the weights ai,j are computed by a row-wise soft-
max on the attention score ei,j :

ei,j = (x
′P
i WQ)(x

′Q
j WK)T /

√
dt. (9)

The same cross-attention implementation goes for Q̂. In
contrast to skeleton-aware geometric self-attention that cap-
tures the intra-point-cloud transformation-invariant geomet-
ric structure, the cross-attention here captures the inter-
point-cloud geometric corrections and consistency. The hy-
brid features obtained from SAGTR are therefore discrimi-
native enough for matching.

Correspondence Dual-Sampler
With discriminative features, it is vital to extract accurate
coarse correspondences. Geometric Transformer (Qin et al.
2022) only matches the superpoints. Despite its efficiency,
superpoints are sparse and may be unrepeatable, leading to
outlier correspondences. Existing efforts strive to tackle this
issue with sophisticated sampling strategies (Li et al. 2023)
or overlap priors from 2D images (Yu et al. 2023). Unfor-
tunately, their required complicated sampling and extra 2D
images result in suboptimal computational efficiency, which
hinders the application of such methods. To this end, we
propose CDS to effectively augment the correspondence set
with our effective skeletal representation, leading to a more
accurate and robust hybrid coarse correspondence set.

We separately construct the non-skeletal correspondence
set C and skeletal correspondence set Cs by feature match-
ing: We first compute the Gaussian correlation matrix S ∈
R|P̂|×|Q̂| for the normalized features FP and FQ, and then
use a dual-normalization operation (Sun et al. 2021; Rocco
et al. 2018) to suppress ambiguous matches. Finally, we se-
lect at most Nc largest entries for each correspondence set.

Since skeleton points lying on non-overlap regions may
introduce outlier correspondences, we introduce the Spectral
Denoising procedure to filter Cs with a spectral matching
algorithm (Leordeanu and Hebert 2005): We firstly compute
a compatibility matrix based on the 3D spatial consistency
of Cs. Then, we iteratively remove components conflicting
with the item of the maximum principal eigenvector until
either the principal eigenvector becomes zero or |Cs| equals
the minimum number of the main cluster. The main cluster,
denoted as C′

s, is the final skeletal correspondence set.
Finally, we resample the least confident Ns entries of C

with top Nk correspondences in C′

s to obtain the hybrid cor-
respondence set C′

, thereby improving the accuracy and ro-
bustness of the hybrid coarse correspondence set by replac-
ing potential outliers with more reliable correspondences.

Losses
We use a registration loss and a skeleton loss to supervise
SPEAL. The registration loss consists of Overlap-aware

Circle Loss (Loc) and Point Matching Loss (Lp) from Ge-
ometric Transformer (Qin et al. 2022):

L = Loc + Lp. (10)

The skeleton loss in Lin et al. (2021) is used to supervise the
SEM. It is the weighted sum of Sampling Loss Ls, Point-to-
sphere Loss Lr and Radius Regularizing Loss Lp2s:

Lskeleton = Ls + λ1Lp2s + λ2Lr, (11)

where λ1 and λ2 are hyperparameters to balance the losses.
Please refer to the supplementary material for more details.

Experiments
Datasets and Experimental Setup
Same-Source Dataset. The KITTI Odometry dataset
(Geiger, Lenz, and Urtasun 2012) serves as a widely-used
dataset for odometry and SLAM evaluation. It can also be
employed to test same-source point cloud registration. This
dataset comprises 11 sequences of LiDAR point clouds. We
follow the existing practices (Qin et al. 2022; Huang et al.
2021a) to use sequences 00-06 for training, sequences 07-
08 for evaluation and sequences 09-10 for testing.
Cross-Source Datasets. Currently, there are few cross-
source datasets of large-scale outdoor scenes available for
registration tasks. This hinders the development of cross-
source registration methods. Therefore, we have developed
a novel dataset1 termed KITTI CrossSource derived from
KITTI Odometry. Our proposed dataset includes 11 se-
quences of LiDAR point clouds and reconstructed point
clouds generated from stereo images using MonoRec (Wim-
bauer et al. 2021). We improve the reconstruction quality
with a filter-and-combine strategy. Please refer to the sup-
plementary material for details.

The GermanyForest3D dataset is derived from an exist-
ing large-scale forest scene dataset (Weiser et al. 2022). It
contains cross-source point cloud data acquired in 12 for-
est plots in south-west Germany under leaf-on and leaf-
off conditions. Each plot provides Airborne Laser Scanning
(ALS), Terrestrial Laser Scanning (TLS) and UAV-borne
Laser Scanning (ULS) point clouds. In this paper, we use
ALS and ULS scans to evaluate the cross-source registration
performance. In experiments, we use 10 plots for training, 1
for validation and 1 for testing.
Data Preprocessing. For the GermanyForest3D dataset, the
point clouds of each plot are subdivided into 30m× 30m×
30m blocks to make them suitable for the registration task.
For all datasets, the Iterative Closest Point (ICP) algorithm
from the Open3D library (Zhou, Park, and Koltun 2018) is
used to refine the noisy ground truth transformation, follow-
ing previous works (Qin et al. 2022; Lu et al. 2021). The
point clouds are downsampled with a voxel size of 0.3m.
Metrics. Following previous practices (Qin et al. 2022; Lu
et al. 2021; Huang et al. 2021a), we evaluate the registra-
tion performance using following metrics: Relative Rotation
Error (RRE), Relative Translation Error (RRE), and Reg-
istration Recall (RR). We use a RRE threshold and a RTE

1The dataset will be made publicly available. Please refer to
github.com/kezheng1204/KITTI-CrossSource for updates.



Method KITTI CrossSource KITTI Odometry
RRE(◦) RTE(m) RR(%) RRE(◦) RTE(m) RR(%)

RANSAC 6.14 9.46 0.8 0.54 0.13 91.9
FGR – – – 0.96 0.93 39.4
FCGF – – – 0.30 0.095 96.6
DGR – – – 0.37 0.320 98.7
HRegNet 2.19 0.84 69.3 0.29 0.120 99.7
CoFiNet 1.99 0.81 67.6 0.41 0.085 99.8
Predator 5.06 2.59 34.2 0.27 0.068 98.8
PCAM 4.07 2.40 45.9 0.79 0.12 98.0
GeoTrans. 1.87 0.63 96.8 0.24 0.068 99.8
SPEAL 1.41 0.58 97.3 0.23 0.069 99.8

Table 1: Cross-source (the proposed KITTI CrossSource)
and same-source (KITTI Odometry) registration results on
the KITTI datasets. ”–” indicates the method is not applica-
ble to the dataset.

threshold to compute RR for all datasets (RRE < 0.5◦ and
RTE < 0.3m for GermanyForest3D and RRE < 5◦ and
RTE < 2m for KITTI datasets). Additionally, we measure
the quality of correspondences with Inlier Ratio (IR), which
is the fraction of extracted correspondences whose residuals
are below a certain threshold under the ground-truth trans-
formation.
Implementation Details. To train SPEAL, we use Adam
(Kingma and Ba 2014) optimizer with an initial learning rate
of 1e− 4 and a weight decay of 1e− 6. We train SPEAL for
200 epochs with a batch size of 1 on a NVIDIA RTX 3090
GPU.
Baselines. We compare our method with state-of-the-art
methods of three classes: (a) Traditional methods, including
RANSAC (Fischler and Bolles 1981) and FGR (Zhou, Park,
and Koltun 2016). (b) Transformer-based methods, includ-
ing CoFiNet (Yu et al. 2021a), Predator(Huang et al. 2021a),
PCAM (Cao et al. 2021), REGTR (Yew and Lee 2022)
and Geometric Transformer (abbreviated as GeoTrans.) (Qin
et al. 2022). (c) Other learning-based methods, including
FCGF (Choy, Park, and Koltun 2019), DGR (Choy, Dong,
and Koltun 2020) and HRegNet (Lu et al. 2021).

Cross-Source Results
KITTI CrossSource. The quantitative results are reported
in Table 1. Our method achieves state-of-the-art perfor-
mance on this dataset. For traditional methods, FGR is not
applicable to this dataset and our approach outperforms
RANSAC by a large margin. HRegNet is a recent SOTA
for outdoor large-scale scenes. However, it presents sub-
optimal performance on this dataset, showing considerable
performance decay for cross-source data. In contrast, our
SPEAL is more accurate in terms of all metrics, and has a
28% higher RR than HRegNet. Among transformer-based
methods, our method surpasses GeoTrans. by a large margin,
showing the effectiveness of the integrated skeletal priors.
GermanyForest3D. This cross-source dataset is with large
scale and unstructured scenes, which are challenging for reg-
istration. The evaluation results under different overlap ra-
tios are shown in Table 2. Traditional methods show subop-
timal performance, and RANSAC even fails to register low

Overlap RRE (◦) ↓ RTE (m) ↓ RR(%) ↑
≤ 30% > 30% ≤ 30% > 30% ≤ 30% > 30%

RANSAC 112.0 91.1 24.66 17.4 – –
FGR 41.86 28.3 14.32 8.49 – –
FCGF 1.54 0.53 0.49 0.19 8.7 56.6
DGR 1.06 0.38 0.36 0.10 32.8 76.2
HRegNet 1.16 1.40 0.141 0.238 24.7 41.7
REGTR 3.11 2.48 0.89 0.73 11.3 23.9
GeoTrans. 0.328 0.176 0.097 0.053 88.1 96.5
SPEAL(ours) 0.296 0.165 0.088 0.048 91.7 99.3

Table 2: Cross-source registration results on the
GermanyForest3D dataset. ”–” indicates that the method is
not applicable to the dataset.

overlap point clouds. Learning-based methods overall per-
form better. However, current methods still suffer from con-
siderable performance decay especially under low overlap
condition. SPEAL outperforms all the others by a large mar-
gin, showing outstanding robustness introduced by skeletal
priors in low overlap and unstructured condition.

Same-Source Results
Table 1 also lists the quantitative results on the same-source
dataset KITTI Odometry. Compared with recent state-of-
the-arts, our method achieves comparable performance in
terms of RTE and RR, and outperforms all the other meth-
ods in terms of RRE. This result indicates that our method is
also effective for same-source registration, while achieving
state-of-the-art performance for cross-source registration.

Analysis
Effectiveness of the Skeletal Priors. To qualitatively ver-
ify the effectiveness of the skeletal representation, we vi-
sualize the dual-class correspondences from the CDS mod-
ule, including superpoints and skeleton points. The quali-
tative results are shown in Fig. 6. In addition to the chal-
lenges of partial overlap and density differences, this scan
also presents the challenge of unstructured objects. How-
ever, SPEAL is still able to extract right correspondences
with the help of skeletons, while the current state-of-the-
art, GeoTrans., completely fails. SPEAL achieves an IR of
36.8%, which is nearly 10× higher than GeoTrans. It is
worth noting that with our spectral denoising step, the skele-
tal correspondences achieve an IR of 75%, demonstrating
the effectiveness of the spectral denoising step.
Robustness. Fig. 7(a) displays registration recalls with dif-
ferent RRE and RTE thresholds in KITTI CrossSource.
SPEAL consistently outperforms the other methods. In par-
ticular, it achieves a registration recall of 86.04% in the chal-
lenging low overlap of 30% ∼ 50%, which is 9.3% higher
than the second-best method. In addition, Fig. 7(b) compares
registration recalls and inlier ratios under different overlap
with GeoTrans. Our method consistently achieves higher in-
lier ratios under all overlap ratios. This demonstrates the su-
perior quality of correspondences generated by our method
with skeletal priors. The results prove that our SPEAL is
robust to various threshold settings, and demonstrates out-
standing performance in low overlap condition.



(a) Gorund Truth (b) Pose (SPEAL)

(c) Pose (GeoTrans.) (d) Superpoint
Correspondences (GeoTrans.)

(e) Superpoint
Correspondences (SPEAL)

(f) Skeletal Correspondences
(SPEAL)

Figure 6: Qualitative results on KITTI CrossSource. Red
and green denotes outlier and inlier correspondences, re-
spectively.

Ablation Studies
Overall Effectiveness. We conduct ablation studies to as-
sess the effectiveness of SPEAL on GermanyForest3D. We
compare different configurations of SPEAL, including: (a)
vanilla geometric self-attention and vanilla cross attention,
(b) skeleton-aware self-attention and vanilla cross attention,
(c) skeleton-aware self-attention and skeleton-aware cross
attention. In addition, we also compare with (d) the method
without the CDS module, which only samples the coarse
correspondences from superpoints. The results in Table 3
demonstrate the effectiveness of our design.

Model RRE(◦)↓ RTE(m)↓ RR(%)↑
(a) vanilla 0.19 0.054 96.2
(b) cross attn. w/o SPE 0.18 0.051 97.4
(c) w/ SSE & SPE 0.18 0.049 97.1
(d) corr. w/o CDS 0.19 0.051 96.3
(e) SPEAL (Ours) 0.16 0.048 99.3

Table 3: Ablation studies on SPEAL.

Spectral Denoising in CDS. To validate the effectiveness of
spectral denoising, we also ablate the CDS module. We com-
pare different schemes for applying the spectral denoising.
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Figure 7: Quantitative results on robustness of SPEAL on
the KITTI CrossSource dataset.

Spectral Denoising RRE(◦)↓ RTE(m)↓ RR(%)↑Sup. Corr. Skel. Corr.
0.17 0.051 98.1

✓ 0.20 0.063 97.8
✓ ✓ 0.19 0.062 98.1

✓ 0.16 0.048 99.3

Table 4: Ablation studies on the CDS module. Sup. Corr.
and Skel. Corr. denote the superpoint correspondences and
skeletal correspondences, respectively.

The results in Table 4 demonstrate that the spectral denois-
ing step is only necessary for the skeletal correspondences
and leads to inferior performance in other configurations.

Conclusion
In this paper, we have proposed SPEAL, a novel point cloud
registration method that leverages a MAT-based skeletal rep-
resentation to capture the geometric intricacies, thereby fa-
cilitating registration. Our method introduces SEM to ex-
tract the skeleton points and their skeletal features. Further-
more, we design SAGTR and CDS which explicitly inte-
grate skeletal priors to ensure robust and accurate correspon-
dences. Extensive experiments demonstrate that SPEAL is
effective for both same-source and cross-source point cloud
registration.
Acknowledgement. This work was supported in part by
the National Key R&D Program of China under Grant
2021YFF0704600, the Fundamental Research Funds for the
Central Universities (No. 20720220064).



References
Aoki, Y.; Goforth, H.; Srivatsan, R. A.; and Lucey, S. 2019.
Pointnetlk: Robust & efficient point cloud registration using
pointnet. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 7163–7172.
Au, O. K.-C.; Tai, C.-L.; Chu, H.-K.; Cohen-Or, D.; and Lee,
T.-Y. 2008. Skeleton extraction by mesh contraction. ACM
transactions on graphics (TOG), 27(3): 1–10.
Bai, X.; Luo, Z.; Zhou, L.; Chen, H.; Li, L.; Hu, Z.; Fu,
H.; and Tai, C.-L. 2021. Pointdsc: Robust point cloud reg-
istration using deep spatial consistency. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 15859–15869.
Besl, P. J.; and McKay, N. D. 1992. Method for registration
of 3-D shapes. In Sensor fusion IV: control paradigms and
data structures, volume 1611, 586–606. Spie.
Blum, H. 1967. A transformation for extracting new de-
scriptions of shape. Models for the perception of speech and
visual form, 362–380.
Cao, A.-Q.; Puy, G.; Boulch, A.; and Marlet, R. 2021.
PCAM: Product of cross-attention matrices for rigid regis-
tration of point clouds. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, 13229–13238.
Cao, J.; Tagliasacchi, A.; Olson, M.; Zhang, H.; and Su, Z.
2010. Point cloud skeletons via laplacian based contrac-
tion. In 2010 Shape Modeling International Conference,
187–197. IEEE.
Carion, N.; Massa, F.; Synnaeve, G.; Usunier, N.; Kirillov,
A.; and Zagoruyko, S. 2020. End-to-end object detection
with transformers. In Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part I 16, 213–229. Springer.
Choy, C.; Dong, W.; and Koltun, V. 2020. Deep global reg-
istration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2514–2523.
Choy, C.; Park, J.; and Koltun, V. 2019. Fully convolutional
geometric features. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, 8958–8966.
Deng, H.; Birdal, T.; and Ilic, S. 2018a. Ppf-foldnet: Unsu-
pervised learning of rotation invariant 3d local descriptors.
In Proceedings of the European conference on computer vi-
sion (ECCV), 602–618.
Deng, H.; Birdal, T.; and Ilic, S. 2018b. Ppfnet: Global con-
text aware local features for robust 3d point matching. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 195–205.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Fischler, M. A.; and Bolles, R. C. 1981. Random sample
consensus: a paradigm for model fitting with applications
to image analysis and automated cartography. Communica-
tions of the ACM, 24(6): 381–395.

Fu, K.; Liu, S.; Luo, X.; and Wang, M. 2021. Robust point
cloud registration framework based on deep graph matching.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 8893–8902.
Geiger, A.; Lenz, P.; and Urtasun, R. 2012. Are we ready
for autonomous driving? the kitti vision benchmark suite.
In 2012 IEEE conference on computer vision and pattern
recognition, 3354–3361. IEEE.
Gojcic, Z.; Zhou, C.; Wegner, J. D.; and Wieser, A. 2019.
The perfect match: 3d point cloud matching with smoothed
densities. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 5545–5554.
Huang, H.; Wu, S.; Cohen-Or, D.; Gong, M.; Zhang, H.; Li,
G.; and Chen, B. 2013. L1-medial skeleton of point cloud.
ACM Trans. Graph., 32(4): 65–1.
Huang, S.; Gojcic, Z.; Usvyatsov, M.; Wieser, A.; and
Schindler, K. 2021a. Predator: Registration of 3d point
clouds with low overlap. In Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition,
4267–4276.
Huang, X.; Mei, G.; and Zhang, J. 2020. Feature-metric reg-
istration: A fast semi-supervised approach for robust point
cloud registration without correspondences. In Proceedings
of the IEEE/CVF conference on computer vision and pattern
recognition, 11366–11374.
Huang, X.; Mei, G.; Zhang, J.; and Abbas, R. 2021b. A com-
prehensive survey on point cloud registration. arXiv preprint
arXiv:2103.02690.
Kingma, D. P.; and Ba, J. 2014. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980.
Lee, J.; Kim, S.; Cho, M.; and Park, J. 2021. Deep hough
voting for robust global registration. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
15994–16003.
Leordeanu, M.; and Hebert, M. 2005. A spectral technique
for correspondence problems using pairwise constraints. In
Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 2, 1482–1489. IEEE.
Li, P.; Wang, B.; Sun, F.; Guo, X.; Zhang, C.; and Wang, W.
2015. Q-mat: Computing medial axis transform by quadratic
error minimization. ACM Transactions on Graphics (TOG),
35(1): 1–16.
Li, Y.; Tang, C.; Yao, R.; Ye, A.; Wen, F.; and Du, S.
2023. HybridPoint: Point Cloud Registration Based on
Hybrid Point Sampling and Matching. arXiv preprint
arXiv:2303.16526.
Lin, C.; Li, C.; Liu, Y.; Chen, N.; Choi, Y.-K.; and Wang,
W. 2021. Point2skeleton: Learning skeletal representations
from point clouds. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, 4277–
4286.
Lin, T.-Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.;
and Belongie, S. 2017. Feature pyramid networks for ob-
ject detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 2117–2125.



Lu, F.; Chen, G.; Liu, Y.; Zhang, L.; Qu, S.; Liu, S.; and
Gu, R. 2021. Hregnet: A hierarchical network for large-
scale outdoor lidar point cloud registration. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 16014–16023.
Ma, W.-C.; Wu, F.-C.; and Ouhyoung, M. 2003. Skeleton
extraction of 3D objects with radial basis functions. In 2003
Shape Modeling International., 207–215. IEEE.
Misra, I.; Girdhar, R.; and Joulin, A. 2021. An end-to-end
transformer model for 3d object detection. In Proceedings
of the IEEE/CVF International Conference on Computer Vi-
sion, 2906–2917.
Pais, G. D.; Ramalingam, S.; Govindu, V. M.; Nascimento,
J. C.; Chellappa, R.; and Miraldo, P. 2020. 3dregnet: A deep
neural network for 3d point registration. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, 7193–7203.
Qin, Z.; Yu, H.; Wang, C.; Guo, Y.; Peng, Y.; and Xu, K.
2022. Geometric transformer for fast and robust point cloud
registration. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 11143–11152.
Rocco, I.; Cimpoi, M.; Arandjelović, R.; Torii, A.; Pajdla,
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