
FEDGS: Federated Graph-based Sampling with Arbitrary Client Availability

Zheng Wang,1 Xiaoliang Fan, 1,* Jianzhong Qi, 2 Haibing Jin,1 Peizhen Yang, 1

Siqi Shen,1 Cheng Wang1

1Fujian Key Laboratory of Sensing and Computing for Smart Cities, School of Informatics, Xiamen University, Xiamen, China
2School of Computing and Information Systems, University of Melbourne, Melbourne, Australia

zwang@stu.xmu.edu.cn,
fanxiaoliang@xmu.edu.cn, jianzhong.qi@unimelb.edu.au, {jinhaibing, yangpz}@stu.xmu.edu.cn,

{siqishen,cwang}@xmu.edu.cn

Abstract

While federated learning has shown strong results in opti-
mizing a machine learning model without direct access to
the original data, its performance may be hindered by in-
termittent client availability which slows down the conver-
gence and biases the final learned model. There are significant
challenges to achieve both stable and bias-free training un-
der arbitrary client availability. To address these challenges,
we propose a framework named Federated Graph-based Sam-
pling (FEDGS), to stabilize the global model update and
mitigate the long-term bias given arbitrary client availabil-
ity simultaneously. First, we model the data correlations of
clients with a Data-Distribution-Dependency Graph (3DG)
that helps keep the sampled clients data apart from each other,
which is theoretically shown to improve the approximation
to the optimal model update. Second, constrained by the far-
distance in data distribution of the sampled clients, we fur-
ther minimize the variance of the numbers of times that the
clients are sampled, to mitigate long-term bias. To validate
the effectiveness of FEDGS, we conduct experiments on three
datasets under a comprehensive set of seven client availability
modes. Our experimental results confirm FEDGS’s advantage
in both enabling a fair client-sampling scheme and improving
the model performance under arbitrary client availability. Our
code is available at https://github.com/WwZzz/FedGS.

Introduction
Federated learning (FL) enables various data owners to col-
laboratively train a model without sharing their own data
(McMahan et al. 2017). In a FL system, there is a server that
broadcasts a global model to clients and then aggregates the
local models from them to update the global model. Such a
distributed optimization may cause prohibitive communica-
tion costs due to the unavailability of clients (Gu et al. 2021).

As an early solution to this problem, (McMahan et al.
2017) propose to uniformly sample a random subset of
clients without replacement to join the training process. (Li
et al. 2020) sample clients in proportion to their data sizes
with replacement to obtain an unbiased estimator of update.
More recently, some works take the client availability into
account when sampling clients (Yan et al. 2020; Gu et al.

*Corresponding Author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An motivating example: there are significant chal-
lenging to achieve both stable model updates and bias-free
training with the intermittent client availability in FL.

2021; Balakrishnan et al. 2021; Cho, Wang, and Joshi 2020;
Huang et al. 2020). They show that selecting clients with-
out considering whether the clients are active will lead to
unbounded waiting times and poor responding rates. As a
result, they sample only the active clients to guarantee im-
mediate client availability (Gu et al. 2021; Cho, Wang, and
Joshi 2020). For example, in Fig. 1, the server will not sam-
ple the inactive Client A and Client B at Round t− 1.

However, enabling both stable model updates and bias-
free training under arbitrary client availability (i.e., without
any assumption on when each client will become available)
poses significant challenges which have not been addressed.
On one hand, the model is improved on the data distri-
butions of the sampled clients at each round, which might
lead to the detriment of the data specificity of non-sampled
clients (Fraboni et al. 2021). For example, in Fig. 1, fair-
selection (Huang et al. 2020) tries to guarantee the least sam-
pled times for each client (and hence it is “fair”). While mit-
igating the long-term bias, it will ignore the data of the red
type at Round t+1, since it only considers the balance of the
sampled frequency of clients. This fails to observe the data
heterogeneity across the clients and leads to instability of the

ar
X

iv
:2

21
1.

13
97

5v
3

 [
cs

.L
G

]
 7

 D
ec

 2
02

2

model update due to the absence of the gradients computed
on the “red” data. On the other hand, the global models
trained by FL may also be biased towards clients with higher
availability in a long run. Also in Fig. 1, the MDSample (Li
et al. 2020) and Variance-Reduce (Fraboni et al. 2021; Bal-
akrishnan et al. 2021) methods, which do not consider the
difference in client availability, introduce bias towards the
clients with higher availability (i.e. Client A is overlooked
at Round t + 1 regardless of not sampled in the previous
rounds). In summary, there are significant challenges to ad-
dress two competitive issues (i.e. stable model updates and
bias-free training) that limit the FL training performance un-
der the arbitrary client availability.

To address the issues above, we propose a novel
FL framework named Federated Graph-based Sampling
(FEDGS) to tackle the arbitrary client availability problem.
We first model the data correlations of clients with a Data-
Distribution-Dependency Graph (3DG) that helps keep the
sampled clients data far from each other. We further mini-
mize the variance of the numbers of times that the clients are
sampled to mitigate long-term bias. Extensive experiments
on three datasets under different client availability modes
confirm FEDGS’s advantage in both enabling a fair client-
sampling scheme and improving the model performance un-
der arbitrary client availability.

The contributions of this work are summarized as follow:
• We propose FEDGS that could both stabilize the model

update and mitigate long-term bias under arbitrary client
availability. To the best of our knowledge, this is the first
work that tackles the two issues simultaneously.

• We propose the data correlations of clients with a Data-
Distribution-Dependency Graph (3DG), which helps
keep sampled clients apart from each other, and is also
dedicate to mitigate long-term bias.

• We design a comprehensive set of seven client availabil-
ity modes, on which we evaluate the effectiveness of
FEDGS on three datasets. We observe that FEDGS out-
performs existing methods in both client-selection fair-
ness and model performance.

Background and Problem Formulation
Given N clients where the kth client has a local data size of
nk and a local objective function Fk(·), we study the stan-
dard FL optimization problem as:

min
θ
F (θ) =

N∑
k=1

nk
n
Fk(θ) (1)

where θ is the shared model parameter and n =
∑N
k=1 nk

is the total data size. A common approach to optimize this
objective is to iteratively broadcast the global model (i.e., its
learned parameter values) θt to all clients at each training
round t and aggregate local models {θt+1

1 , ..., θt+1
N } that are

locally trained by clients using SGD with fixed steps:

θt+1 =

N∑
k=1

nk
n
θt+1
k (2)

When the number of clients is large, it is infeasible to update
θt+1 with θt+1

k from each client k, due to communication
constraints. Sampling a random client subset St ⊂ [N] to
obtain an estimator of the full model update at each round
becomes an attractive in this case, which is shown to en-
joy convergence guarantee when the following unbiasedness
condition is met (Li et al. 2019; Fraboni et al. 2021):

ESt
[
θt+1

]
=

N∑
k=1

nk
n
θt+1
k (3)

Further, Fraboni et al. and Balakrishnan et al. propose to re-
duce the variance of the estimator as follows to enable faster
and more stable training:

V ar(∇Fθ) = ‖V ar(∇Fθ)‖1 (4)

= Et‖∇Fθt − E[∇Fθt]‖22 (5)

However, the effectiveness of these variance-reducing meth-
ods is still limited by the long-term bias caused by the arbi-
trary client availability as discussed earlier.

Mitigating long-term bias
We first propose an objective that could mitigate the long-
term bias without any assumption on the client availabil-
ity. We denote the set of available clients at the round t as
At ⊆ [N]. Then, sampled clients should satisfy St ⊆ At
and |St| ≤ M , where M is the maximum sample size lim-
ited by the server’s capacity. To mitigate the impact of unex-
pected client availability on the sampled subset from a long-
term view, we sample clients by minimizing the variance of
the sampling counts of clients (i.e., the numbers of times
that the clients are sampled after t rounds). Let the sampling
counts ofN clients after t rounds be vt = [vt1, ..., v

t
N] where

vtk =
∑t
τ=1 I(k ∈ Sτ) = vt−1

k + I(k ∈ St). Then, the vari-
ance of the client sampling counts after round t is:

V ar(vt) =
1

N − 1

N∑
k=1

(vtk − v̄t)2 (6)

=
1

N − 1

N∑
k=1

(
vt−1
k + I(k ∈ St)− (v̄t−1 +M/N)

)2
(7)

As discussed earlier, only balancing participating rates for
clients may introduce large variance of model updates that
slows down the model convergence (Fraboni et al. 2021). To
enable a stable training, we introduce low-variance model
updates as a constraint on the feasible space when minimiz-
ing the variance of sampling counts of the clients. We thus
formulate our sampling optimization problem as:

min
|St|≤M,St⊆At

V ar(vt) (8)

s.t. V ar(∇FSt(θt)) ≤ σ2 (9)

where σ2 ≥ 0 is a coefficient that allows to search for a
trade-off between the two objectives of stable model updates

Figure 2: An example of two types of local data distribu-
tions: (a) a simple cluster; and (b) a complex cluster.

and balanced client sampling counts. When σ2 → ∞, the
optimal solution will select the currently available clients
with the lowest sampling counts. On the other hand, a small
σ2 will limit the sampled clients to those with adequately
small variance of the corresponding model updates.

Methodology
This section presents our solutions to the optimization prob-
lem above (Eq. 8 and 9). The main challenge lies in con-
verting the constraint on the variance of the global model
update into a solvable one. For this purpose, we utilize the
data similarity between clients to increase the data diversity
of the sampled subset.

Variance Reduction Based On 3DG
Before illustrating our method, we briefly review previous
works that address the Gradient Variance Reduction prob-
lem in FL. Li et al. add an proximal term to the local ob-
jectives to prevent the model from overfitting on the local
data. Karimireddy et al. use control variate to dynamically
correct the biased updates during local training. These two
methods can avoid large model update variance by debias-
ing the local training procedure, which is orthogonal to the
sampling strategy. Fraboni et al. group the clients into M
clusters and then sample clients from these clusters with-
out replacement to increase the chance for each client to
be selected while still promising the unbiasedness of the
model updates. Similarly, Balakrishnan et al. approximates
the full model updates by enlarging the diversity of the se-
lected client set, which is done by minimizing a relaxed up-
per bound of the difference between the optimal full update
and the approximated one. Such a relaxation aims to achieve
that for each client k ∈ [N] there exists an adequately simi-
lar client i ∈ St in the sampled subset.

The existing methods work well when there are obvious
clusters of clients based on their local data distributions in
Fig. 2(a). However, when the local data distributions are too
complex to cluster like Fig. 2(b), clustering the clients can-
not accurately capture the implicit data correlations between
clients, which may lead to performance degradation. Mean-
while, minimizing the relaxed upper is not the only means to
enlarge the diversity of the sampled clients. We can achieve
the same purpose without such minimization.

Figure 3: A visualized example of the oracle 3DG generated
on CIFAR10 partitioned by 20 clients and each of them owns
data with only two labels. The different color means the ratio
of corresponding labels in their local dataset.

To better describe the correlations among clients’ local
data distributions, we model the local data distribution sim-
ilarities with a Data-Distribution-Dependency Graph (3DG)
instead of grouping the clients into discrete clusters, as
shown in Fig. 3. Then, we show that keeping a large aver-
age shortest-path distance between the sampled nodes (i.e.
clients) on the 3DG helps approximate the full model up-
date. Intuitively, encouraging the sampled nodes to spread
as far as possible helps differentiate the sampled local data
distributions, which brings a higher probability to yield good
balanced approximations for the full model update. This is
proven as Theorem 1.
Theorem 1. Suppose that there are C types of data (i.e.,
C types of labels) over all datasets, where each data type’s
ratio is pi such that the dataset can be represented by the
vector p∗ = [p∗1, ..., p

∗
C],1>p∗ = 1. Without losing gener-

ality, consider p∗ to be uniformly distributed in the simplex
in RC , the number of local updates to be 1, and 3DG is a
complete graph. A larger distance of sampled clients on the
3DG leads to a more approximate full model update.

Proof. See Appendix A.

Although the proof is based on that 3DG is a complete
graph, we empirically show that keeping the clients far away
from each others on the 3DG can benefit FL training even
when this assumption is broken.

Construction of 3DG in FL
Now we discuss how to construct the 3DG. A straightfor-
ward approach is to directly calculate the distance (e.g., KL
divergence) between different local data distributions, which
is infeasible in FL because the clients do not share their lo-
cal data. Without loss of generality, we assume that there
is a feature vector uk ∈ Rd that can well represent the
information about the local data distribution of each client
ck. We argue that this is achievable in practice. For exam-
ple, training an ML model for tasks of supervised learning
(e.g., classification) usually face severe data heterogeneity
in FL, where there may exist label skewness in clients’ lo-
cal data (e.g. each client only owns data with a subset of

labels). In this case, the label distribution vectors (i.e. the
number of items of each label) can well reflect the bias
of each client’s local data. Once given the feature vectors
U = [u1,u2, ...,uN], we can easily calculate the similarity
between any two clients ci and cj with a similarity function
fsim : Rd × Rd → [0, 1] as:

V = [Vij]N×N , Vij = fsim(ui,uj) (10)

Then, the similarity matrix V can be converted into an adja-
cent matrix R for the 3DG over the clients for the 3DG over
the clients by:

Rij =


0, i = j

e−Vij/σ
2

i 6= j, Vij ≥ ε
∞, i 6= j, Vij < ε

where ε > 0 is a positive threshold used to control the
sparsity of the adjacent matrix and σ controls the diversity
of the edge weight. A large value of σ will lead to small
difference between the edge weights.

The feature vector uk can also leak sensitive information
about the clients, and it may not be exposed to the other
clients or the server. It is necessary for the server to ob-
tain the similarities between clients in privacy-preserving
manner to reconstruct or accurately approximate the oracle
3DG (i.e., the 3DG corresponding to the true features U).
To achieve this goal, we present two methods that can help
the server construct the 3DG.

The first is to use techniques based on Secure Scalar Prod-
uct Protocols (SSPP) (Wang et al. 2009; Shundong, Mengyu,
and Wenting 2021), which aims to compute the dot prod-
uct of private vectors of parties. We argue that any existing
solutions of SSPP can be used to reconstruct the similarity
matrix V of clients in our settings, and we detail one of the
existing solutions for scalar product protocal (Du and Zhan
2002) with a discussion on how to adapt it to build the 3DG
in the Appendix D.

Although the SSPP-based methods can construct the ora-
cle 3DG without any error, it cannot be adapted to the case
where the feature vectors are difficult or impossible to ob-
tain. In addition, the SSPP-based method only applies when
the similarity function fsim is a simple dot product.

We propose a second method that computes the similar-
ity between clients based on their uploaded model param-
eters. Given the locally trained models θt+1

i and θt+1
j , a

straightforward way to calculate the similarity between the
two clients is to compute the cosine similarity of their model
updates (Xu and Lyu 2020; Xu et al. 2021)

Vij = max(
∆θt>i ∆θtj
‖∆θti‖‖∆θtj‖

, 0) (11)

where ∆θt>i = θt+1
i −θt. However, since the model parame-

ters’ update is usually of extremely high dimensions but low
rank (Azam et al. 2021), the direct cos similarity may con-
tain too much noise, causing inaccuracy when constructing
the 3DG. Motivated by (Baek et al. 2022), we instead com-
pute the functional similarity based on the model parameters

to overcome the problem above. We first feed a batch of ran-
dom Gaussian noise ε ∼ N (µ,Σ) to all the locally trained
models, where µ and Σ are respectively the mean and covari-
ance of a small validation dataset owned by the server (Zhao
et al. 2018). Then, we take the average of the lth layer’s net-
work embedding on this batch for each client to obtain ei,
and we compute the similarity as:

ei = θi(ε)[l], Vij = max(
e>i ej
‖ei‖‖ej‖

, 0) (12)

where we set l as the output layer in practice.
Another concerning issue is that the server may not have

access to all the clients’ feature vectors during the initial
phase. As a result, the adjacent matrix of clients may need
to be dynamically built and polished round by round. Never-
theless, we emphasize that we are not trying to answer how
to optimally capture the correlations between clients’ local
data distributions in FL. Instead, we aim at showing that the
topological correlations of clients’ local data can be utilized
to improve the training process of FL, and we key how to
build the optimal 3DG for as our future work.

For convenience, we simply assume that all the clients are
available at the initial phase, by which the server can obtain
the 3DG just before training starts. We empirically show the
effectiveness of the approximated 3DG in Sec. 4.4.

FEDGS
We now present our proposed Federated Graph-based Sam-
pling (FEDGS) method. As mentioned in Sec. 3.1, we bound
the variance of the global model update at each round by
keeping a larger average shortest-path distance between each
pair of sampled clients. Given a 3DG, we first use the
Floyd–Warshall algorithm to compute the shortest-path dis-
tance matrix H = [hij]N×N for all pairs of clients. Let
stk ∈ {0, 1} be a binary variable, where stk = 1 means client
ck is selected to participate training round t and stk = 0 oth-
erwise. Then, the sampling result in round t can be st =
[st1, ..., s

t
N] ∈ {0, 1}N , where the average shortest-path dis-

tance between sampled clients is written as:

g(St) =
2

N(N − 1)

∑
i,j∈St,i6=j

hijs
t
is
t
j =

s>t Hst
N(N − 1)

(13)

Accordingly, we replace the constraint in Equation (9) with
g(St) ≥ α, and we convert this constraint into a penalty
term added into the objective. After rewriting the equation
(8) to be a maximization problem based on st, we obtain:

max
st≤at,stk∈{0,1}

αs>t Hst
N(N − 1)

− 1

N − 1
z>st (14)

s.t. 1>st = min(M, |At|) (15)

where zk = 2(vt−1
k − v̄t−1 − M/N) + 1, at =

{at1, ..., atN} ∈ {0, 1}N and atk = 1 means client ck is avail-
able in round t. Note that stk = 0 for the clients unavailable
clients in round t and st2k = stk. Thus, Equation (14) can be

reduced to:

max
s̃tk∈{0,1}

s̃>t

(α
N

H̃− diag(z̃)
)

s̃t (16)

s.t. 1>s̃t = min(M, |At|) (17)

s̃t = [sti1, ..., s
t
i|At|] ∈ {0, 1}

|At| and stij = 1 represents that
the jth client in the available set is selected. z̃ ∈ R|At| and
H̃ ∈ R|At|×|At| also only contains the element where the
corresponding clients are available in round t.

This rewritten problem is a constrained mixed integer
quadratic problem, which is a variety of an NP-hard prob-
lem, p-dispersion (Pisinger 1999), with a non-zero diagonal.
We optimize it to select clients within a fixed upper bound
of wall-clock time. We empirically show that a local optimal
can already bring non-trivial improvement when the client
availability varies.

Aggregation Weight. Instead of directly averaging the up-
loaded model parameters like (Balakrishnan et al. 2021; Li
et al. 2020), We normalize the ratio of the local data size of
selected clients as weights of the model aggregation:

θt+1 =
∑
k∈St

nk∑
i∈St ni

θt+1
k (18)

We argue that this is reasonable in our sampling scheme.
Firstly, FEDGS forces to balance the sampling counts of all
the clients regardless of their availability. Thus, for conve-
nience, we simply assume that all the clients will be uni-
formly sampled with the same frequency MTc

N in every Tc
rounds, and that the size of the set of available clients |At|
is always larger than the sample size limit M in each round
t. By treating the frequency MTc

N /Tc = M/N as the prob-
ability of each client being selected without replacement in
each round T0 + τ , (τ ≤ Tc), we obtain:

ESt [θt+1] = ESt

[
M

N

N∑
k=1

nk
nk + σ(St, k)

θt+1
k

]
(19)

=
M

N

N∑
k=1

nk
nk + σk

θt+1
k (20)

where σk = ESt [σ(St, k)] = ESt [
∑
j∈St,j 6=k nj] =

M−1
N−1 (n − nk). Therefore, the expected updated model of
the next round follows:

ESt [θt+1] =
M

N

N∑
k=1

nk

nk + M−1
N−1 (n− nk)

θt+1
k (21)

=

N∑
k=1

nk
n

1

1 + 1
M

N−M
N−1

nk−n̄
n̄

θt+1
k (22)

=

N∑
k=1

nk
n
γkθ

t+1
k (23)

From Equation (22), we see that the degree of data imbal-
ance will impact the unbiasedness of the estimation. When

Algorithm 1: Federated Graph-Based Sampling
Input:The global model θ, the feature matrix of clients’
data distribution U, the maximum wall-clock time of the
solver τmax, the sizes of clients’ local data nk, the number
of local updating steps E, and the learning rate ηt

1: Initialize the global model parameters θ0 and the sam-
pling counts of clients v0 = [0, ..., 0] ∈ NN .

2: Create the 3DG G based on the techniques in Sec. 3.2.
3: Compute the shortest-path distance of each pair of nodes

on 3DG by Floyd Algorithm to obtain H.
4: for communication round t = 0, 1, ..., T − 1 do
5: The server checks the set of available clients At.
6: The server uses vt and H to solve equation (16)

within the maximum wall-clock time τmax to obtain
the sampled client set St ⊆ At

7: The server broadcasts the model θt to clients in St.
8: for each client k ∈ St do
9: for each iteration i = 0, 1, ..., E − 1 do

10: θtk,i+1 ← θtk,i − ηt∇Fk(θtk,i)
11: end for
12: Client k send the model parameters θt+1

k = θtk,E
to the server.

13: end for
14: The server aggregates the received local model pa-

rameters θt+1 =
∑
k∈St

nk∑
i∈St

ni
θt+1
k

15: The server updates the sampling counts of clients
vt+1[k]← vt[k] + I(k ∈ St)

16: end for

the data size is balanced as nk = n̄, ∀k ∈ [N], the esti-
mation is unbiased since γk = 1,∀k ∈ [N]. If the data
size is imbalanced, the degree of data imbalance will only
have a controllable influence on the unbiasedness with the
ratio of each client’s local data’s size to the average data
size ‖nk−n̄‖n̄ . This impact can be immediately reduced by
increasing the number of sampled clients M at each round.

The analysis above is based on the assumption that our
proposed FEDGS can well approximate the results obtained
by uniform sampling without replacement in ideal settings.
Generally speaking, a small V ar(vt) will limit the differ-
ence between the sampling counts, which is also empirically
verified by our experimental results. The pseudo codes in
Algorithm 1 summarizes the main steps of FEDGS.

Experiment
Experimental Setup
Datasets and models to be trained We validate FEDGS
on three commonly used federated datasets: Synthetic
(0.5, 0.5) (Li et al. 2020), CIFAR10 (Krizhevsky, Hinton
et al. 2009) and FashionMNIST (Xiao, Rasul, and Voll-
graf 2017). For Syntetic dataset, we follow the settings use
by (Li et al. 2020) to generate imbalance and non-i.i.d.
dataset with 30 clients. For CIFAR10, we unequally parti-
tion the dataset into 100 clients following the label distri-
bution Yk ∼ Dir(αp) (Hsu, Qi, and Brown 2019) (p is

Name Description
Dependency

Active Rate
Time Data Other

IDeaL Full client availability - - - 1

MoreDataFirst (Ours) More data, higher availability - data size nk - nβk
maxi n

β
i

LessDataFirst (Ours) Less data, higher availability - data size nk - n−βk
maxi n

−β
i

YMaxFirst (Gu et al. 2021) Larger value of label, higher availability - value of label set {yki} - β mini{yki}
maxc,j{ycj} + (1− β)

YCycle (Ours) Periodic availability with label values round t value of label set {yki} - βI
(
∪yki

1+(t%Tp)
Tp

∈ [yki
numY

, yki+1
numY

)
)

+ (1− β)

Log Normal (Ribero, Vikalo, and De Veciana 2022) Independent availability obeying lognormal - - ck ∼ lognormal(0, ln 1
1−β) ck

maxi ci

Sin Log Normal (Ribero, Vikalo, and De Veciana 2022) Sin-like intermittent availability of with LN round t - ck ∼ lognormal(0, ln 1
1−β) ck

maxi ci

(
0.4sin

(
1+(t%Tp)

Tp
2π
)

+ 0.5
)

Table 1: An Overview of Different Client Availability Modes.

Dataset Synthetic(0.5, 0.5) CIFAR10 FashionMNIST
Availability IDL LN SLN LDF MDF IDL LN SLN LDF MDF IDL YMF YC
UniformSample 0.302 0.320 0.324 0.330 0.362 0.975 1.042 1.038 1.049 0.999 0.315 0.331 0.333
MDSample 0.302 0.322 0.328 0.328 0.326 0.971 1.037 1.048 1.051 0.991 0.315 0.333 0.338
Power-of-Choice 0.691 0.362 0.352 0.557 0.301 1.287 1.108 1.078 1.267 1.026 0.345 0.326 0.311
FEDPROX µ = 0.01 0.301 0.346 0.376 0.319 0.410 0.972 1.056 1.162 1.039 0.995 0.315 0.331 0.374
FEDGS α = 0.0 0.307 0.305 0.320 0.309 0.310 1.006 0.976 1.002 0.974 0.967 0.302 0.310 0.324
FEDGS α = 0.5 0.311 0.306 0.319 0.308 0.311 0.977 0.973 1.000 0.966 0.974 0.299 0.312 0.312
FEDGS α = 1.0 0.328 0.306 0.318 0.308 0.311 0.968 0.972 0.996 0.971 0.963 0.300 0.308 0.310
FEDGS α = 2.0 0.306 0.307 0.320 0.308 0.311 0.970 0.975 1.001 0.973 0.969 0.310 0.303 0.312
FEDGS α = 5.0 0.317 0.307 0.321 0.309 0.311 0.976 0.974 0.996 0.972 0.972 0.307 0.303 0.307

Table 2: The optimal testing loss of methods running under different client availability modes on three datasets. Each result in
the table is averaged over 3 different random seeds.

the global label distribution). For FashionMNIST, we bal-
ance the data sizes for 100 clients, each of whom owns data
of only two labels. We train a logistic regression model for
Synthetic(0.5, 0,5) and CNN models for CIFAR10 and Fash-
ionMNIST. More details on datasets are in Appendix C.

Client Availability We first review the client availability
settings discussed in existing FL literature (Ribero, Vikalo,
and De Veciana 2022; Gu et al. 2021), a common way is to
allocate an active probability to each client at each round.
We observe that the client’s active probability may depend
on data distribution or time (Ribero, Vikalo, and De Ve-
ciana 2022; Gu et al. 2021). We mainly conclude the existing
client availability modes and propose a comprehensive set of
seven client availability modes in Table 1 to conduct exper-
iments under arbitrary availability. For each mode, we set a
coefficient β ∈ [0, 1] to control the degree of the global un-
availability, where a large value of β suggests a small chance
for most devices to be active. A further explanation about
these availability modes is provided in Appendix C, where
we also visualize the active state of clients at each round.

Baselines We compare our method FEDGS with: (1) UNI-
FORMSAMPLE (McMahan et al. 2017), which samples
available clients uniformly without replacement, (2) FED-
PROX/MDSAMPLE (Li et al. 2020), which samples avail-
able clients with a probability proportion to their local
data size and trains w/wo proximal term, (3) POWER-OF-
CHOICE (Cho, Wang, and Joshi 2020), which samples avail-
able clients with top-M highest loss on local data and is
robust to the client unavailability. Particularly, all the re-
ported results of our FEDGS are directly based on the or-
acle 3DG. We put results obtained by running FEDGS on

the constructed 3DG in the Appendix B.

Hyper-parameters For each dataset, we tune the hyper-
parameters by grid search with FedAvg, and we adopt the
optimal parameters on the validation dataset of FedAvg to
all the methods. The batch size is B = 10 for Synthetic
and B = 32 for both CIFAR10 and FashionMNIST. The
optimal parameters for Synthetic, Cifar10, FashionMNIST
are resepctively η = 0.1, E = 10, E = 10, η = 0.03 and
E = 10, η = 0.1. We round-wisely decay the learning srate
by a factor of 0.998 for all the datasets. More details about
the hyper-parameters are put in Appendix C.

Implementation All our experiments are run on a 64 GB-
RAM Ubuntu 18.04.6 server with Intel(R) Xeon(R) CPU
E5-2630 v4 @ 2.20GHz and 4 NVidia(R) 2080Ti GPUs. All
code is implemented in PyTorch 1.12.0.

Results of Impact of Client Availability
We run experiments under different client availability modes
to study the impact of arbitrary client availability, where
the main results are shown in Table 2. Overall, the opti-
mal model performance measured by the test loss is im-
pacted by the client availability modes for all methods and
over all three datasets. On Synthetic, UniformSample suffers
the worst model performance degradation, 19.8% (i.e. IDL
v.s. MDF), while that for MDSample is 8.6% (i.e. IDL v.s.
LDF). FEDGS retrains a strong model performance, with a
degradation no more than 5% for all the values of α. Fur-
ther, our proposed FEDGS achieves the best performance
under all the availability modes except for IDL and MDF.
For IDL, our FEDGS still yields competitive results compar-
ing with UniformSample and MDSample (0.306 v.s. 0.302).

Figure 4: The results of final client sampling counts on
FashionMNIST-YMF-0.9 and Cifar10-LN-0.5.

Figure 5: The testing loss curve respectively on
FashionMNIST-YMF-0.9 and CIFAR10-LN-0.5.

For MDF, although Power-of-Choice achieves the optimal
result, its model performance is extremely unstable across
different availability modes, e.g., its model performance is
almost 200% worse than the others for IDL. Meanwhile,
FEDGS still achieves 4.9% improvement over MDSample
and 14.3% over UniformSample in this case. For CIFAR10
and FashionMNIST, all the optimal results fall into the re-
gion runned with FEDGS. Using α > 0 brings a non-trivial
improvement over using α = 0 in most of the client avail-
ability modes, which suggests that the variance reduction of
FEDGS can also benefit FL training.

Results of Client Selection Fairness
As shown in Fig. 4, FEDGSα=1 can substantially enhance
fairness in client selection, which results in a uniform distri-
bution of client sample counts both on FashionMNIST with
YMF-0.9 and CIFAR10 with LN-0.5. We also show the cor-
responding curves of test loss in Fig. 5, which show that
FEDGS can stabilize FL training and find a better solution.

Effectiveness of 3DG Construction
To validate the effectiveness of our method to reconstruct
the oracle 3DG based on the functional similarity of model
parameters, we use the F1-score of predicting the edges in
the oracle 3DG to measure the quality of the construction,
and we compare results with those obtained using the cosine
similarity. The oracle 3DG is generated with ε = 0.1 and
σ2 = 0.01. Considering the difference in the feature space
of the oracle and those of the model-based methods, we vary
the value of ε ∈ {0, 0.01, 0.05, 0.1, 0.5} and report the re-
sults with the highest F1-score for each method. Results in
Table 3 confirm the effectiveness of the proposed method to
approximate the oracle 3DG, where the functional-similarity
method achieves a higher F1-score than the cos-similarity
method on both datasets. The results of FEDGS running on

Dataset Method Precision Recall F1-Score

CIFAR10
functional similarity 0.8789 0.8700 0.8744
cosine similarity 1.0000 0.1316 0.2327

FashionMNIST
functional similarity 0.9761 0.7097 0.8218
cosine similarity 0.3765 0.9853 0.5448

Table 3: The effectiveness of how to construct 3DG.

the model-based 3DG are included in Appendix B.

Related Works
Client Sampling in FL
Client sampling is proven to has a significant impact on the
stability of the learned model (Cho, Wang, and Joshi 2020).
(McMahan et al. 2017) uniformly samples clients without
replacement to save communication efficiency. (Li et al.
2020) samples clients proportion to their local data size and
uniformly aggregate the models with full client availability.
(Fraboni et al. 2021) reduces the variance of model to accel-
erate the training process. Nevertheless, these works ignored
the long-term bias introduced by arbitrary client availability,
which will result in the model overfitting on a particular data
subset. Recent works (Ribero, Vikalo, and De Veciana 2022;
Gu et al. 2021; Huang et al. 2020) are aware of such long-
term bias from the arbitrary availability of clients. However,
these two competitive issues (e.g. stable model updates and
bias-free training) have not been considered simultaneously.

Graph Construction in FL
When it is probable to define the topology structure among
clients in FL, several works directly utilized underlying cor-
relations among different clients according to their social re-
lations (He et al. 2021). Other works proposed to connect
the clients with their spatial-temporal relations as a graph
(Meng, Rambhatla, and Liu 2021; Zhang et al. 2021). How-
ever, those works are used to conduct explicit correlations
between clients (e.g. social relation, spatial relation), which
were not able to uncover the important and implicit connec-
tions among clients. In short, we are the first to construct
Data-Distribution-Dependency Graph (3DG) to learn the po-
tential data dependency of sampled clients, which is proven
to both guarantee a fair client sampling scheme and improve
the model performance under arbitrary client availability.

Conclusion
We addressed the long-term bias and the stability of model
updates simultaneously to enable faster and more stable FL
under arbitrary client availability. To this end, we proposed
the FEDGS framework that models clients’ data correlations
with a Data-Distribution-Dependency Graph (3DG) and uti-
lizes the graph to stabilize the model updates. To mitigate
the long-term bias, we minimize the variance of the num-
bers of times that clients are sampled under the far-distance-
on-3DG constraint. Our experimental results on three real
datasets under a comprehensive set of seven client avail-
ability modes confirm the robustness of FEDGS on arbitrary
client availability modes. In the future, we plan to study how
to define and construct 3DG across various ML tasks.

Acknowledgements
The research was supported by Natural Science Foundation
of China (62272403, 61872306), Fundamental Research
Funds for the Central Universities (20720200031),
FuXiaQuan National Independent Innovation Demon-
stration Zone Collaborative Innovation Platform
(No.3502ZCQXT2021003), and Open Fund of PDL
(WDZC20215250113).

References
Azam, S. S.; Hosseinalipour, S.; Qiu, Q.; and Brinton, C.
2021. Recycling Model Updates in Federated Learning: Are
Gradient Subspaces Low-Rank? In International Confer-
ence on Learning Representations.
Baek, J.; Jeong, W.; Jin, J.; Yoon, J.; and Hwang,
S. J. 2022. Personalized Subgraph Federated Learning.
arXiv:2206.10206.
Balakrishnan, R.; Li, T.; Zhou, T.; Himayat, N.; Smith, V.;
and Bilmes, J. 2021. Diverse client selection for feder-
ated learning via submodular maximization. In International
Conference on Learning Representations.
Cho, Y. J.; Wang, J.; and Joshi, G. 2020. Client Selection in
Federated Learning: Convergence Analysis and Power-of-
Choice Selection Strategies. arXiv:2010.01243.
Du, W.; and Zhan, Z. 2002. Building decision tree classi-
fier on private data. Electrical Engineering and Computer
Science.
Fraboni, Y.; Vidal, R.; Kameni, L.; and Lorenzi, M. 2021.
Clustered sampling: Low-variance and improved represen-
tativity for clients selection in federated learning. In In-
ternational Conference on Machine Learning, 3407–3416.
PMLR.
Gu, X.; Huang, K.; Zhang, J.; and Huang, L. 2021. Fast fed-
erated learning in the presence of arbitrary device unavail-
ability. Advances in Neural Information Processing Systems,
34: 12052–12064.
He, C.; Balasubramanian, K.; Ceyani, E.; Yang, C.; Xie, H.;
Sun, L.; He, L.; Yang, L.; Yu, P. S.; Rong, Y.; Zhao, P.;
Huang, J.; Annavaram, M.; and Avestimehr, S. 2021. Fed-
GraphNN: A Federated Learning System and Benchmark
for Graph Neural Networks. arXiv:2104.07145.
Hsu, T.-M. H.; Qi, H.; and Brown, M. 2019. Measuring
the Effects of Non-Identical Data Distribution for Federated
Visual Classification. arXiv:1909.06335.
Huang, T.; Lin, W.; Wu, W.; He, L.; Li, K.; and Zomaya,
A. Y. 2020. An efficiency-boosting client selection scheme
for federated learning with fairness guarantee. IEEE Trans-
actions on Parallel and Distributed Systems, 32(7): 1552–
1564.
Karimireddy, S. P.; Kale, S.; Mohri, M.; Reddi, S.; Stich, S.;
and Suresh, A. T. 2020. Scaffold: Stochastic controlled av-
eraging for federated learning. In International Conference
on Machine Learning, 5132–5143. PMLR.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.

Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2020. Federated optimization in heteroge-
neous networks. Proceedings of Machine Learning and Sys-
tems, 2: 429–450.
Li, X.; Huang, K.; Yang, W.; Wang, S.; and Zhang, Z.
2019. On the Convergence of FedAvg on Non-IID Data.
arXiv:1907.02189.
McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; and
y Arcas, B. A. 2017. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelli-
gence and statistics, 1273–1282. PMLR.
Meng, C.; Rambhatla, S.; and Liu, Y. 2021. Cross-node fed-
erated graph neural network for spatio-temporal data model-
ing. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, 1202–1211.
Peng, B. 2007. The determinant: A means to calculate vol-
ume. Recall, 21: a22.
Pisinger, D. 1999. Exact solution of p-dispersion problems.
DIKU.
Ribando, J. M. 2006. Measuring solid angles beyond di-
mension three. Discrete & Computational Geometry, 36(3):
479–487.
Ribero, M.; Vikalo, H.; and De Veciana, G. 2022. Federated
Learning Under Intermittent Client Availability and Time-
Varying Communication Constraints. arXiv:2205.06730.
Shundong, L.; Mengyu, Z.; and Wenting, X. 2021. Secure
Scalar Product Protocols. Chinese Journal of Electronics,
30(6): 1059–1068.
Wang, I.-C.; Shen, C.-H.; Zhan, J.; Hsu, T.-s.; Liau, C.-J.;
and Wang, D.-W. 2009. Toward empirical aspects of secure
scalar product. IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), 39(4): 440–
447.
Wang, J.; Liu, Q.; Liang, H.; Joshi, G.; and Poor, H. V. 2020.
Tackling the objective inconsistency problem in heteroge-
neous federated optimization. Advances in neural informa-
tion processing systems, 33: 7611–7623.
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms. arXiv:1708.07747.
Xu, X.; and Lyu, L. 2020. A Reputation Mechanism Is All
You Need: Collaborative Fairness and Adversarial Robust-
ness in Federated Learning. arXiv:2011.10464.
Xu, X.; Lyu, L.; Ma, X.; Miao, C.; Foo, C. S.; and Low, B.
K. H. 2021. Gradient driven rewards to guarantee fairness in
collaborative machine learning. Advances in Neural Infor-
mation Processing Systems, 34: 16104–16117.
Yan, Y.; Niu, C.; Ding, Y.; Zheng, Z.; Wu, F.; Chen, G.;
Tang, S.; and Wu, Z. 2020. Distributed Non-Convex Op-
timization with Sublinear Speedup under Intermittent Client
Availability. arXiv:2002.07399.
Zhang, C.; Zhang, S.; James, J.; and Yu, S. 2021. FAST-
GNN: A topological information protected federated learn-
ing approach for traffic speed forecasting. IEEE Transac-
tions on Industrial Informatics, 17(12): 8464–8474.

Zhao, Y.; Li, M.; Lai, L.; Suda, N.; Civin, D.; and Chan-
dra, V. 2018. Federated Learning with Non-IID Data.
arXiv:1806.00582.

A. Proof of Theorem 1
Proof. Supposing there are C types of data in the global
dataset, the global dataset can be represented by the data
ratio vector p∗ = [p∗1, p

∗
2, ..., p

∗
C]>, where each data type’s

ratio is p∗i > 0 and 1>p∗ = 1. Then, the local data
distribution of each client ck can also be represented by
pk = [pk1, pk2, ..., pkC]>,1>pk = 1. We slightly modify
the way of constructing 3DG as

Rij =

{
0, i = j
‖ei − ej‖22 i 6= j

where ei = pi
‖pi‖ , ej =

pj
‖pj‖ and the principle of the smaller

similarity corresponding to the larger distance still holds.
Given that 3DG is a complete graph, we demonstrate that
the shortest-path distance matrix H is the same to R, since
distance(i, k) + distance(k, j) ≥ distance(i, j) is always
established for any k.

In each communication round t, the server samples M
clients to participate. By denoting the sampled clients’ nor-
malized data distribution as Pt = [ei1 , ..., eiM] ∈ RC×M+ ,
the average shortest-path distance of these selected clients is

f(St) =
1

M(M − 1)

∑
i,j∈St

Hij (24)

=
1

M(M − 1)

 ∑
i,j∈St

(2− 2e>i ej)

 (25)

=
2M

M − 1
− 2

M(M − 1)
‖P>t Pt‖m1 (26)

After receiving the local models, the server aggregates
their uploaded models to obtain

θt+1 =
∑
k∈St

wkθ
t+1
k = θt +

∑
k∈St

wk∆θtk (27)

where wk is the aggregation weight of the selected client ck
and 1>w = 1. Now, the question is how possible can the
aggregated model update recover the true model update ∆θt
that is computed on all the clients?

To answer this question, we first simply consider the
model update computed on all the ith type of data to be
∆θ̄ti ∈ Rd and ∆t = [∆θ̄t1, ...,∆θ̄tC] ∈ Rd×C , then we
can approximate the true model update by

∆θ∗t =

C∑
i=1

p∗i∆θ̄ti (28)

= ∆tp∗ (29)

Similarly, each client ck’s model update can also be repre-
sented by

∆θtk =

C∑
i=1

pki∆θ̄ti = ∆tpk (30)

Figure 6: The example of the angle of n vectors in n-
dimension space, where n = 2 for the left and n = 3 for
the right.

Then, the aggregated model update is∑
k∈St

wk∆θtk =
∑
k∈St

∆t
pk
‖pk‖

wk‖pk‖ (31)

= ∆tPt(w � [‖p1‖, ..., ‖pM‖]>) (32)
= ∆tPtw̃ (33)

When there exists an optimal weight vector w∗ such
that ∃µ > 0, µPtw

∗ = p∗, we demonstrate that the
sampled subset can well approximate the true model up-
date, which requires the true weight p∗ to fall into the
region of the convex cone µPtw

∗. Given the assump-
tion that p∗ is uniformly distributed in the simplex of
RC , the problem becomes how to compare the probability
Pr
(
p∗ ∈ {µPtw

∗|1>w = 1,w ≥ 0, µ > 0}
)

for different
Pt.

Let’s first consider the 2-dimension case (i.e. the left one
of Fig.6). Given two vectors p1 and p2, the probability can
be measured by the ratio of the angle between p1 and p2

as φ
π/2 . For the cases where the dimension is higher than

n = 2 (i.e. the right one in Fig.6.), (Ribando 2006) defines
the normalized measurement of solid angle

ṼΩ =
volC(Ω ∩BC)

volC(BC)
=

volC−1(Ω ∩ SC−1)

volC−1SC−1
(34)

where volC is the usual volume form in RC , BC is the unit
ball in RC and SC is the unitC-sphere. Further, they provide
a way to compute the solid angle for C unit positive vector

ṼΩ =
1

πC/2

∫
RC≥0

e−u
>P>t Ptu|det Pt|du (35)

which represents the probability of the optimal weight in the
convex cone by projecting p∗ and each ray (i.e. column) in
Pt onto the surface of a unit sphere centered at O in RC .

For the case where the number of sampled clients M is
smaller than C or M = C but |det Pt| = 0, we have
ṼΩ = 0 (i.e. simply repeating one of the vectors in Pt when
M < C until the number of vectors reaches C), which
means it’s nearly impossible to recover the uniformly dis-
tributed optimal weight by directly modifying the aggrega-
tion weights of the sampled clients. One way to approximate

the global model update in this case is to choose clients
with higher data quality in priority (i.e. local data distri-
bution similar to the global one), which needs p∗ and pk
are already known and is out of the scope of our discus-
sion. Therefore, we limit our discussion to the case where
|det Pt| 6= 0 and M = C (i.e. the solid angle for M > C
can be computed by first dissecting Pt into simplicial cones
(Ribando 2006)).

Based on the equation (35), we demonstrate that the large
average shortest-path distance will encourage a large ṼΩ. We
rearrang the equation (35) as

ṼΩ =

(
|det Pt|
πC/2

)(∫
RC≥0

e−
∑
i,j∈[C] uiuje

>
i ejdu

)
(36)

Now we respectively show how enlarging the average
shortest-path distance (i.e. the equation (24)) leads to the
increasing of the two terms on the right hand side of the
equation (36).

The Impact on The First Term. To study how the deter-
minant is impacted by the average shortest-path distance of
the sampled clients, we compute the volume of the paral-
lelepiped with the columns in Pt (i.e. Definition 1 and Def-
inition 2) to obtain |det Pt| according to Lemma 1 (Peng
2007).

Definition 1. Let e1, ..., eC ∈ RC . A parallelepiped P =
P (e1, ..., eC) is the set

P = {
C∑
i=1

tiei|0 ≤ ti ≤ 1 for i from 1 to C} (37)

Definition 2. The n-dimensional volume of a parallelepiped
is

Volk[P (e1, ..., ek)] =

{
‖e1‖, k = 1
Volk−1[P (e1, ..., ek−1)]‖ẽk‖, k > 1

where ẽk = ek + (e1, ..., ek−1)a = ek + Ek−1ak and the
unique chosen of ak satisfies ẽ>k ei = 0,∀i ∈ [k − 1].

Lemma 1. Given a C-dimensional parallelepiped P in
C-dimensional space defined by columns in Pt, we have
VolC(P) = |det Pt|

By denoting Pk = P (e1, ..., ek), the absolute value of the
determinant of Pt is

|det Pt| = VolC(PC) = ||ẽC ||VolC−1(PC−1)

(38)

=
√

(eC + EC−1aC)>(eC + EC−1aC)VolC−1(PC−1)

(39)

Since ẽ>Cei = 0,∀i ∈ [C − 1], we have

E>C−1(eC + EC−1aC) = 0 (40)

⇒ aC = −(E>C−1EC−1)−1E>C−1eC (41)

Thus, the inner product of ẽC with itself is

ẽ>C ẽC = ‖eC −EC−1(E>C−1EC−1)−1E>C−1eC‖22 (42)

= 1− [e>Cei]
>
i6=C(E>C−1EC−1)−1[e>Cei]i6=C (43)

Given |detP | 6= 0 → rank(EC−1) = C − 1, we
have that E>C−1EC−1 is a real symmetric matrix and full
rank, which indicates that it is orthogonally diagonalizable.
Thus, we orthogonally diagonalize E>C−1EC−1 into QΛQ>

to obtain its inverse (E>C−1EC−1)−1 = QΛ−1Q> where
λi > 0. And we rewrite the equation (43) with hC =
[e>Ce1, ..., e

>
CeC−1] as:

1− h>CQ̃Q̃
>hC = 1− ‖Q̃hC‖22 (44)

= 1−
C−1∑
i=1

h2
i

λ2
i

(45)

= 1−
C−1∑
i=1

1

λ2
i

(e>Cei)
2 (46)

From the equation (46), we can see that keeping eC less
similar with all the other vectors (i.e. e>Cei,∀i 6= C) will
increase |det Pt|. In addition, the analysis doesn’t specify
the Cth vector in Pt to be any particular client. Therefore,
enlarging f(St) will also enlarge the absolute value of the
determinant of Pt.

The Impact on The Second Term. According to
Cauchy–Schwarz inequality,∫

RC≥0

e−
∑
i,j∈[C] uiuje

>
i ejdu (47)

≥
∫
RC≥0

e
−
√∑

i,j∈[C](uiuj)
2
√∑

i,j∈[C](e
>
i ej)2du (48)

≥
∫
RC≥0

e
−
√∑

i,j∈[C](uiuj)
2
√∑

i,j∈[C] e
>
i ejdu (49)

=

∫
RC≥0

e−
√∑

i,j∈[C](uiuj)
2‖P>t Pt‖

1
2
m1du (50)

which indicates that enlarging f(St) in the equation (24) can
improve the lower bound of the second term of the solid
angle.

Therefore, we conclude that keeping the average shortest-
path distance of the sampled subset to be large will increase
the chance to find a proper aggregation weight to well ap-
proximate the true model update.

B. Results on Constructed 3DG
We also run FedGS on the 3DG constructed by using
the proposed functional similarity and cosine similarity of
model parameters. We vary the same α ∈ {0, 0.5, 1, 2, 5}
for FedGSfunc and FedGScos, and list the optimal results
of them with the same settings of Table 2, as is listed
in Table 4. For Synthetic dataset, FedGScos outperforms
FedGS and FedGSfunc under most of the client availabil-
ity, which suggests that our definition of the oracle graph

Setting FedGS FedGSfunc FedGScos

Synthetic

IDL 0.306 0.304 0.304
LN 0.305 0.306 0.304
SLN 0.318 0.319 0.318
LDF 0.308 0.306 0.307
MDF 0.310 0.310 0.309

CIFAR10

IDL 0.968 0.963 0.971
LN 0.972 0.972 0.973
SLN 0.996 0.991 0.994
LDF 0.966 0.975 0.967
MDF 0.963 0.962 0.965

Fashion
IDL 0.299 0.305 0.304
YMF 0.303 0.307 0.307
YC 0.307 0.314 0.313

Table 4: The comparison of testing loss of FedGS running
on the Oracle/Constructed 3DG.

on Synthetic dataset is not the true oracle one. For CI-
FAR10, FedGSfunc’s performance is competitive with the
results obtained by FedGS, and the two methods consis-
tently outperform FedGScos in most cases. For FashionM-
NIST, FedGSfunc and FedGScos suffer more performance
reduction than CIFAR10. However, they still outperform
MDSample and UniformSample when client availability
changes (0.313 v.s. 0.333 in YC).

C. Experimental Details
Datasets
Synthetic. We follow the setting in (Li et al. 2020) to gen-
erate this dataset by

yk,i = argmax{softmax(Wkxk,i + bk)} (51)

where (xk,i, yk,i) is the ith example in the local data Dk

of client ck. For each client ck, its local optimal model
parameter (Wk,bk) is generated by µk ∼ N (0, α) ∈
R,Wk[i, j] ∼ N (µk, 1),Wk ∈ R10×60,bk[i] ∼
N (µk, 1),bk ∈ R10, and its local data distribution is
generated by Bk ∼ N (0, β),vk[i] ∼ N (Bk, 1),vk ∈
R60,xk,i ∼ N (vk,Σ) ∈ R60,Σ = diag({i−1.2}60

i=1). The
local data size for each client is nk ∼ lognormal(4, 2). In
our experiments, we generate this dataset for 30 clients with
α = β = 0.5.

CIFAR10. The CIFAR10 dataset (Krizhevsky, Hinton
et al. 2009) consists of totally 60000 32x32 colour im-
ages in 10 classes (i.e. 50000 training images and 10000
test images). We partition this dataset into 100 clients with
both data size imbalance and data heterogeneity. To cre-
ate the data imbalance, we set each client’s local data size
nk ∼ lognormal(log(nN) − 0.5, 1) to keep the mean data
size is n̄ = n

N . Then, we generate the local label distribution
pk ∼ Dirichlet(αp∗) for each client, where p∗is the la-
bel distribution in the original dataset. Particularly, we loop
replacing the local label distribution of clients with the new
generated one from the same distribution until there exists
no conflict with the allocated local data sizes, which allows

(a) CIFAR10 (b) FashionMNIST

Figure 7: The visualization of data partition for CIFAR10 (a)
and FashionMNIST (b). Each bar in the figures represents a
client’s local dataset and each label is assign to one color.
The length of each bar reflects the size of the local data.

the coexisting of controllable data imbalance and data het-
erogeneity. We use α = 1.75 in our experiments and provide
the visualized partition in Fig.7(a).

FashionMNIST. The dataset (Xiao, Rasul, and Vollgraf
2017) consists of a training set of 60,000 examples and a test
set of 10,000 examples, where each example is a 28×28 size
image of fashion and associated with a label from 10 classes.
In this work, we partition this dataset into 100 clients and
equally allocate the same number of examples to each one,
where each client owns data from two labels according to
(McMahan et al. 2017). A direct visualization of the parti-
tioned result is provided in Fig.7(b).

Models. For CIFAR10 and FashionMNIST, we use CNNs
that are respectively used for CIFAR10 and MNIST in
(McMahan et al. 2017). For Synthetic dataset, we use the
same logistical regression model as (Li et al. 2020).

Hyperparameters

For each dataset, we partition each client’s local data into
training and validating parts. Then, we tune the hyperpa-
rameters with FedAvg(McMahan et al. 2017) by grid search
on the validation datasets under the ideal client availabil-
ity. The batch size is B = 10 for Synthetic and B =
32 for both CIFAR10 and FashionMNIST. Specifically, we
fixed the local updating steps instead of epochs to avoid
unexpected bias caused by imbalanced data (Wang et al.
2020). We search the number of local update steps in
E ∈ {10, 50, 100} for all the datasets and the learning rate
ηSynthetic ∈ {0.01, 0.05, 0.1, 0.3}, ηCIFAR10,Fashion ∈
{0.003, 0.01, 0.03, 0.1}. For CIFAR10, the optimal param-
eters are E = 10, η = 0.03 and we train the model for
1000 rounds. For Synthetic, we train the model for 1000
round using η = 0.1, E = 10. For FashionMNIST, we
train the model for 500 rounds with the optimal parameters
E = 10, η = 0.1. We round-wisely decay the learning rate
by a factor of 0.998 for all the datasets. To simulate the com-
munication constraint of the server, we fixed the proportion
of selected clients to be 0.1 for CIFAR10 and FashionM-
NIST, and 0.2 for Synthetic dataset, respectively.

Figure 8: The active states of clients in each communication
round under different availability modes.

Client Availability Modes
To obtain the results in Table 2, we conduct experiments un-
der the client availability modes of IDL, LN0.5, SLN0.5,
LDF0.7, MDF0.7, YMF0.9 and YC0.9 across different
datasets, where the float number at the end of the name
of these settings is the coefficient β that controls the de-
gree of the global unavailability of clients. For each client
availability mode, we visualize the active states of clients
in each communication round, which provides an intuitive
way to distinguish the difference between the client avail-
ability modes. In Fig.8, we respectively visualize the IDL,
LDF0.7, MDF0.7 in Synthetic, LN0.5, SLN0.5 in CIFAR10
and YMF0.9, YC0.9 in FashionMNIST. For a fair compar-
ison of different methods, we use an independent random
seed (i.e. independent to the other random seeds used to op-
timizing the model) to control the active states of clients in
each communication round, which promises that the active
states of clients will remain unchanged when running differ-
ent methods.

Oracle 3DG For Datasets
For FashionMNIST and CIFAR10, we use the local data dis-
tribution vectors as the features to calculate the similarities

Algorithm 2: Scalar Product
Input:The client A’s feature vector A ∈ Rd, and the client
B’s feature vector B ∈ Rd

1: Server generates two random vectors Ra ∈ Rd, Rb ∈
Rd and two scalars ra and rb such that ra+rb = Ra·Rb,
where either ra or rb is randomly generated.

2: Server sends {Ra, ra} to clientA and {Rb, rb} to client
B.

3: Client A sends Â = A + Ra to server, and client B
sends B̂ = B + Rb to server.

4: Server sends Â to client B, and B̂ to client A.
5: Client B generates a random number v2 and computes
u = Â ·B + rb − v2, then sends u and v2 to server.

6: Server sends u to client A.
7: ClientA computes u−(Ra ·B̂)+ra = A ·B−v2 = v1

and sends v1 to the server.
8: Server calculates the scalar product v1 + v2 = A ·B.

among clients. For Synthetic, since the difference between
clients’ local data mainly locates in the optimal model, we
directly use the local optimal model parameters (Wk,bk)
as the feature vectors. Then, we use the inner dot as the
similarity function to compute the similarity matrix V. We
further normalize the similarity value Vij to [0, 1] by com-
puting V ′ij =

Vij−mini,j Vij
maxi,j Vij−mini,j Vij

, and finally use the nor-
malized similarity matrices to construst the oracle 3DGs as
mentioned in Sec.3.2.

D. Scalar Product Protocol
In our first method to construct the 3DG, we use techniques
based on Secure Scalar Product Protocols (SSPP) to com-
pute the dot product of private vectors of parties. We argue
that any existing solution of SSPP can be used in our set-
tings. Here we introduce (Du and Zhan 2002) to our FL sce-
nario. The original protocol works as follows. Alice and Bob
have different features on the same individuals and want to
calculate the scalar product of their private vectors A and B,
both of size m where m is the sample size of the datasets.
They will do this with the help of a commodity server named
Merlin. The protocol consists of the following steps. First,
Merlin generates two random vectors Ra, Rb of size m and
two scalars ra and rb such that ra + rb = Ra · Rb, where
either ra or rb is randomly generated. Merlin then sends
{Ra, ra} to Alice and {Rb, rb} to Bob. Second, Alice sends
Â = A + Ra to Bob, and Bob sends B̂ = B + Rb to Al-
ice. Third, Bob generates a random number v2 and computes
u = Â ·B + rb − v2, then sends the result to Alice. Fourth,
Alice computes u − (Ra · B̂) + ra = A · B − v2 = v1

and sends the result to Bob. Finally, Bob calculates the final
result v1 +v2 = A ·B. In our FL settings, since there are no
communications between clients, we pass intermediate vari-
ables between clients through the server. The pseudo codes
in Algorithm 2 summarizes the steps of scalar product in our
FL settings.

